Midterm Solutions

1. (a) Since $-8 \pi=2^{3} \pi e^{i \pi}$, p.v. $\sqrt[3]{-8 \pi}=2 \sqrt[3]{\pi} e^{i \pi / 3}=\sqrt[3]{\pi}+i \sqrt[3]{\pi} \sqrt{3}$.
(b) No, because it's not always true that $\operatorname{Arg} z^{2}=2 \operatorname{Arg} z$. (e.g. take $z=e^{2 \pi i / 3}$.) The equation holds only modulo 2π.
(c) No. For example, $\frac{z-1}{z}=1-\frac{1}{z}$ is holomorphic on \mathbb{C}^{*} but all its primitives $z-\log z+c$ for any constant $c \in \mathbb{C}$ are not even continuous nor holomorphic along any choice of branch cut.
2. (a) $u_{M}(x, y)=a x+b y$ and $v_{m}(x, y)=c x+d y$, then

$$
\begin{aligned}
f_{M}(x+i y) & =a x+b y+i(c x+d y)=(a+c i) x+(b+d i) y \\
& =\frac{a+c i}{2}(z+\bar{z})+\frac{b+d i}{2 i}(z-\bar{z}) \\
& =\frac{(a+d)+i(c-b)}{2} z+\frac{(a-d)+i(c+b)}{2} \bar{z} .
\end{aligned}
$$

(b) f_{M} is entire if and only if $w_{2}=0$. That is, $a=d$ and $c=-b$.
3. Both parts can actually be solved simply by showing that the image of f is not dense. Nonetheless, the answers below use more tribal approach. Let $f=u+i v$.
(a) The function $g=\frac{u}{v}$ is both real and entire. By Cauchy-Riemann, this implies that g is a real constant. Therefore, $u=c v$ for some real c. Applying Cauchy-Riemann on f, this implies that $u_{x}=$ $c v_{x}=-c u_{y}$ and $u_{y}=c v_{y}=c u_{x}$, which imply that $u_{x}=u_{y}=v_{x}=$ $v_{y} \equiv 0$. Therefore, f is a constant function.
(b) When u is a bounded function, $\left|e^{f}\right|=e^{u}$ is bounded. Since e^{f} is entire, it must be constant by Liouville. Therefore, f is also constant.
4. (a) We wish to find the roots of the denominator in order to find the singularities of p. Check that the roots of the quartic $w^{4}+4$ are $w= \pm 1 \pm i$. Therefore, the roots of $(z-i)^{4}+4$ are $z= \pm 1, \pm 1+2 i$. These are the values of $a_{1} \ldots a_{4}$.
(b) The only singularity enclosed by γ is 1 . The rest are outside, so the function $(z+1)^{-1}(z-1-2 i)^{-1}(z+1-2 i)^{-1}$ is holomorphic
along γ and its interior. Apply Cauchy's integral formula at 1.

$$
\begin{aligned}
\oint_{\gamma} p(z) d z & =\oint_{\gamma} \frac{(z+1)^{-1}(z-1-2 i)^{-1}(z+1-2 i)^{-1}}{z-1} d z \\
& =2 \pi i(1+1)^{-1}(1-1-2 i)^{-1}(1+1-2 i)^{-1} \\
& =\frac{2 \pi}{4(-1+i)}=\frac{\pi}{8}(-1-i) .
\end{aligned}
$$

5. (a) The integrand can be expressed as $e^{1-i z}$, which is entire. By Cauchy-Goursat, the integral has to be zero.
(b) The integrand f is holomorphic on $\mathbb{C} \backslash\{ \pm 1, \pm i\}$ and has a primitive $F(z)=\frac{1}{2\left(1-z^{4}\right)}$ which is also holomorphic on $\mathbb{C} \backslash\{ \pm 1, \pm i\}$. Since the contour γ runs from 0 to $1+i$ avoiding the singularities of f, we can evaluate the integral using the primitive:

$$
\int_{\gamma} f(z) d z=F(i)-F(0)=\frac{1}{2\left(1-(1+i)^{4}\right)}-\frac{1}{2}=-\frac{2}{5} .
$$

6. (a) When $|z|=1$,

$$
\left.|B(z)|=\frac{|i+2 z|}{|4-2 i z|}=\frac{|i+2 z|}{|4-2 i z||\bar{z}|}=\frac{|i+2 z|}{|4 \bar{z}-2 i|}=\frac{1}{2} \cdot \frac{|i+2 z|}{\mid 2 z+i} \right\rvert\,=\frac{1}{2} .
$$

(The above can also be shown using Cartesian $z=x+i y$ or polar coordinates $z=e^{i \theta}$.) $B(z)$ is holomorphic on $\mathbb{C} \backslash\{-2 i\}$, and especially on a neighbourhood of the closed unit disk $\overline{\mathbb{D}}$. By the maximum principle, $|B(z)| \leq 1 / 2$ whenever $z \in \overline{\mathbb{D}}$. Therefore, $M=\frac{1}{2}$.
(b) Basic trigonometry and Pythagoras gives us $L(\gamma)=2 \sqrt{2+\sqrt{2}}$. The inequality follows from ML inequality.
(c) $B(z)$ can be expressed as $i+\frac{3}{2 z+4 i}$. We have a primitive

$$
F(z)=i z+\frac{3}{2} \log (z+2 i)
$$

which is holomorphic everywhere except on the branch cut chosen to be $\{x-2 i \mid x \leq 0\}$. As γ does not intersect the branch cut, we may use the primitive to evaluate the integral.

$$
\begin{aligned}
\int_{\gamma} B(z) d z & =F(1)-F(-i)=i+\frac{3}{2} \log (1+2 i)-1-\frac{3}{2} \log (i) \\
& =-1+i+\frac{3}{2} \log (2-i) \\
& =\left(\frac{3}{4} \ln 5-1\right)+i\left(1-\frac{3}{2} \tan ^{-1} \frac{1}{2}\right) .
\end{aligned}
$$

Finals Solutions

1. (a) The Laurent series for f valid in $\left\{\frac{1}{4}<|z|<\frac{1}{2}\right\}$ is

$$
\begin{aligned}
f(z) & =\frac{2 i}{1-4 z}+\frac{i}{1+2 z} \\
& =-\frac{i}{2 z} \cdot \frac{1}{1-\frac{1}{4 z}}+\frac{i}{1+2 z} \\
& =-\frac{i}{2 z} \sum_{n=0}^{\infty}(4 z)^{-n}+i \sum_{n=0}^{\infty}(-2 z)^{n} \\
& =\sum_{n=-\infty}^{-1}\left(-2^{2 n+1} i\right) z^{n}+\sum_{n=0}^{\infty}(-2)^{n} i z^{n} .
\end{aligned}
$$

(b) The residue is zero because f is holomorphic about 0 .
(c) The curve should be the positively oriented circle $C(-0.5,0.5)$. γ encloses the simple pole -0.5 of f and no zeros of f. By the argument principle, the winding number is $W(f \circ \gamma)=-1$.
2. (a) False. The imaginary part of a constant function is a constant function, which is trivially entire.
(b) False. The primitive lemma cannot be blindly used since γ intersects with any choice of branch cut of Log. Also, if you do this calculation manually, the value should be $3 \pi i$.
(c) True. For example, $f(z)=\sin (\pi z)$.
(d) True. Let $f=u+i v$ be holomorphic. By Leibniz,

$$
\begin{aligned}
(u v)_{x x} & =\left(u_{x} v+u v_{x}\right)_{x}=u_{x x} v+2 u_{x} v_{x}+u v_{x x}, \\
(u v)_{y y} & =\left(u_{y} v+u v_{y}\right)_{y}=u_{y y} v+2 u_{y} v_{y}+u v_{y y} .
\end{aligned}
$$

By harmonicity of u and v and Cauchy-Riemann equations,

$$
\begin{aligned}
\Delta(u v) & =\left(u_{x x}+u_{y y}\right) v+2\left(u_{x} v_{x}+u_{y} v_{y}\right)+u\left(v_{x x}+v_{y y}\right) \\
& =2\left(u_{x} v_{x}+u_{y} v_{y}\right)=2\left(v_{y} v_{x}-v_{x} v_{y}\right)=0 .
\end{aligned}
$$

3. (a) The numerator has simple zeros at $2 \pi i n$ for integers n, and the denominator has simple zeros at $\pi i n$ for integers n. In overall, for each integer $n, \pi i n$ is a removable singularity if n is even and a single pole if n is odd.
(b) The function f has a removable singularity at 0 . Let's compute the limit

$$
\lim _{z \rightarrow 0} f(z)=\lim _{z \rightarrow 0} \frac{\cosh \frac{z}{2}}{2 e^{2 z}}=\frac{1}{2} .
$$

Thus, $a_{0}=1 / 2$ and $k=0$. The radius of convergence is $R=\pi$.
(c) When $|z|=1$,

$$
\left|z^{2020}-z^{10}+2\right| \leq|z|^{2020}+|z|^{10}+2=4<5=|5 i z| .
$$

When $|z|=\pi$,
$\left|-z^{10}+5 i z+2\right| \leq|z|^{10}+|5 i z|+2=\pi^{10}+5 \pi+2<\pi^{2020}=\left|z^{2020}\right|$.
By Rouche's theorem, the polynomial has the same number of zeros inside \mathbb{D} as $5 i z$, which is 1 , and it has the same number of zeros inside $\mathbb{D}(0, \pi)$ as z^{2020}, which is 2020 . Thus, it has 2019 zeros on the annulus.
4. (a) γ is a rectangle with vertices $\pm R$ and $\pm R+2 i$. Since the singularities of $\cosh \pi z$ are $i\left(k+\frac{1}{2}\right)$ for all integers k, the only ones enclosed by γ are $\frac{i}{2}$ and $\frac{3 i}{2}$.
(b) The integral of f along γ is

$$
\begin{aligned}
\oint_{\gamma} f(z) d z & =2 \pi i\left[\operatorname{Res} f\left(\frac{i}{2}\right)+\operatorname{Res} f\left(\frac{3 i}{2}\right)\right] \\
& =2 \pi i\left[\lim _{z \rightarrow i / 2} \frac{e^{-2 \pi i a z}(z-i / 2)}{\cosh \pi z}+\lim _{z \rightarrow 3 i / 2} \frac{e^{-2 \pi i a z}(z-3 i / 2)}{\cosh \pi z}\right] \\
& =2 \pi i\left[e^{\pi a} \lim _{z \rightarrow i / 2} \frac{1}{\pi \sinh \pi z}+e^{3 \pi a} \lim _{z \rightarrow 3 i / 2} \frac{1}{\pi \sinh \pi z}\right] \\
& =2 \pi i\left[\frac{e^{\pi a}}{\pi i}+\frac{e^{3 \pi a}}{-\pi i}\right]=2\left(e^{\pi a}-e^{3 \pi a}\right) .
\end{aligned}
$$

(c) Let

$$
I=\int_{-\infty}^{\infty} \frac{e^{-2 \pi i a x}}{\cosh \pi x} d x
$$

and I_{j} be the integral of f along γ_{j} for $j=1, \ldots 4$. As $R \rightarrow \infty$, clearly $I_{1} \rightarrow I$ and $I_{3} \rightarrow-e^{4 \pi a} I$ since
$I_{3}=\int_{R}^{-R} f(t+2 i) d t=-\int_{-R}^{R} \frac{e^{-2 \pi i a(t+2 i)}}{\cosh \pi(t+2 i)} d t=-\int_{-R}^{R} \frac{e^{4 \pi a} e^{-2 \pi i a t}}{\cosh \pi t} d t$.

By ML inequality,

$$
\begin{aligned}
& \left|I_{2}\right| \leq L\left(\gamma_{2}\right) \max _{0 \leq t \leq 2} \frac{\left|e^{-2 \pi i a(R+i t)}\right|}{|\cosh \pi(R+i t)|} \leq 2 \max _{0 \leq t \leq 2} \frac{e^{-2 \pi a t}}{\sinh \pi R}=\frac{2 e^{4 \pi a}}{\sinh \pi R} \rightarrow 0 \\
& \left|I_{4}\right| \leq L\left(\gamma_{2}\right) \max _{0 \leq t \leq 2} \frac{\left|e^{-2 \pi i a(-R+i t)}\right|}{|\cosh \pi(-R+i t)|} \leq 2 \max _{0 \leq t \leq 2} \frac{e^{-2 \pi a t}}{\sinh \pi R}=\frac{2 e^{4 \pi a}}{\sinh \pi R} \rightarrow 0
\end{aligned}
$$

Combining all the integrals together and taking $R \rightarrow \infty$, we have

$$
2\left(e^{\pi a}-e^{3 \pi a}\right)=I+0-e^{4 \pi a} I+0
$$

which then simplifies to

$$
I=\frac{1}{\cosh \pi a} .
$$

5. (a) U is open, not closed, unbounded, and disconnected.
(b) The function $w \mapsto i w-1$ is entire. When $|z|<1, z$ is enclosed by γ and by Cauchy's differentiation formula,

$$
f(z)=\frac{2 \pi i}{1!} \frac{d}{d w} i w-\left.1\right|_{w=z}=2 \pi i \cdot i=-2 \pi
$$

When $|z|>1$, the integrand is holomorphic on the closed disk $\overline{\mathbb{D}}$. By Cauchy-Goursat, $f(z)=0$. Therefore, the image is $\{0,-2 \pi\}$.
(c) Use the $z=e^{i x}$ substitution. The integral becomes:

$$
\begin{aligned}
\int_{0}^{2 \pi} e^{\sin x} \cos (\cos x) d x & =\int_{0}^{2 \pi} e^{\sin x} \frac{e^{i \cos x}+e^{-i \cos x}}{2} d x \\
& =\int_{0}^{2 \pi} \frac{e^{\sin x+i \cos x}+e^{\sin x-i \cos x}}{2} d x \\
& =\int_{C(0,1)} \frac{e^{i z}+e^{-i z}}{2} \frac{d z}{i z}=\int_{C(0,1)} \frac{\cos z}{i z} d z
\end{aligned}
$$

Applying residue theorem, this value becomes $2 \pi \cos (0)=2 \pi$.
6. (a) Check that the Laplacian is 0 .
(b) Any harmonic conjugate v must satisfy $v_{x}=-u_{y}=-2 e^{2 x} \cos 2 y$ and $v_{y}=2 e^{2 x} \sin 2 y+1$. Integrating, v must be of the form $-e^{2 x} \cos 2 y+y+c$ for some real value c. Therefore,

$$
f(z)=e^{2 x} \sin 2 y+x+i\left(-e^{2 x} \cos 2 y+y+c\right)=z+i\left(c-e^{2 z}\right)
$$

To satisfy $f(\pi)=\pi, c=e^{2 \pi}$.
(c) By MVP,

$$
\begin{aligned}
|g(0)| & =\left|\frac{1}{2 \pi} \int_{0}^{2 \pi} g\left(\pi e^{i \theta}\right)\right| \\
& \leq \frac{1}{2 \pi}\left|\int_{0}^{\pi} g\left(\pi e^{i \theta}\right) d \theta\right|+\frac{1}{2 \pi}\left|\int_{\pi}^{2 \pi} g\left(\pi e^{i \theta}\right) d \theta\right| \\
& \leq \frac{1}{2 \pi} \int_{0}^{\pi}\left|g\left(\pi e^{i \theta}\right)\right| d \theta+\frac{1}{2 \pi} \int_{\pi}^{2 \pi}\left|g\left(\pi e^{i \theta}\right)\right| d \theta \\
& \leq \frac{1}{2 \pi} \int_{0}^{\pi} 1 d \theta+\frac{1}{2 \pi} \int_{\pi}^{2 \pi} 3 d \theta=2
\end{aligned}
$$

(d) $g-h$ is harmonic on S. By the maximum modulus principle, since $g-h \equiv 0$ on the boundary ∂S, then $g-h \equiv 0$ on S.
7. (a) If $z=x+i y,|A(z)|=\left|e^{e^{x} \cos y+i e^{x} \sin y}\right|=e^{e^{x} \cos y}$. We only need to look at the boundary points by the maximum/minimum modulus principle. The maximum value is attained when $x=\ln \pi$ and $y=0$, resulting in $|A(\ln \pi)|=e^{\pi}$. The minimum value is attained when $x=\ln \pi$ and $y= \pm \pi$, resulting in $|A(\pm \pi i)|=e^{-\pi}$.
(b) The derivative is $A^{\prime}(z)=e^{e^{z}+z}$. Its modulus is $\left|A^{\prime}(z)\right|=e^{x+e^{x} \cos y}$. This is clearly maximised when $y=0$, and $x+e^{x}$ attains maximum when $x=\ln \pi$.
(c) The primitive is $C(z)=\left(z+\frac{4}{3}\right) \log (3 z+4)-z$ and we can pick the branch cut to be the ray $\left\{\left.x-\frac{4}{3} \right\rvert\, x \leq 0\right\}$.
(d) The contour γ runs from 0 to 1 in a spiral contained in the closed unit disk $\overline{\mathbb{D}}$ which lies in U. The primitive C can be used to evaluate the integra since γ avoids the branch cut. The endpoints of γ are 0 and $\sin (\pi / 2) e^{631 \pi i}=-1$. The integral is therefore equal to

$$
\begin{aligned}
\int_{\gamma} B(z) d z & =C(-1)-C(0) \\
& =\left(\frac{1}{3} \log (-3+4)-(-1)\right)-\left(\frac{4}{3} \log 4-0\right) \\
& =1-\frac{4}{3} \ln 4
\end{aligned}
$$

