MAT 342

Applied Complex Analysis 2020 Summer II

Final Examination

Question	1	2	3	4	5	6	7	Total
Grade								

- Instructor: Willie Rush Lim
- Due date: August 14th 2020, 11.59pm EST
- This test has 7 questions, each carrying different weights. The total number of points is 200 .
- The use of calculator or other similar aids such as Matlab and WolframAlpha is prohibited during the test.
- Credit will be given for all questions attempted with clear explanation.
- Submit your answers as one pdf on blackboard.
- In case of technical difficulties, email lim.willie@stonybrook.edu.

Plagiarism Statement ${ }^{11}$

I certify that my answers are my own work, based on my personal study and/or material from lectures. I also certify that I have not copied in part or whole, or otherwise plagiarised the work of other students and/or persons. I acknowledge that students who plagiarize or otherwise engage in academic dishonesty will face serious consequences, including grade reduction or course failure.

[^0]1. Let $f(z)$ be the rational function

$$
f(z)=\frac{3 i}{1-2 z-8 z^{2}} .
$$

(a) Find the Laurent series representation of f defined on the annulus $\{1<|4 z|<2\}$.
(b) Compute the residue of f at 0 .
[4]
Suppose γ is the closed curve parametrised by $\gamma(t)=-e^{i t} \cos t$ for $\frac{\pi}{2} \leq t \leq \frac{3 \pi}{2}$.
(b) Sketch the curve γ and find the winding number of $f \circ \gamma$ without drawing the curve $f(\gamma(t))$.
(This page is intentionally left blank.)
2. Explain whether or not any of the following statements are true.
(a) The imaginary part of an entire function cannot be an entire function.
(b) The integral of $1 / z$ along the curve $\gamma(t)=e^{i t},-2 \pi \leq t \leq \pi$ is πi because

$$
\int_{\gamma} \frac{1}{z} d z=\log (\gamma(\pi))-\log (\gamma(-2 \pi))=\log (-1)-\log (1)=\pi i
$$

(c) There is a non-constant entire function f such that $f(n)=0$ for all integers n.
(d) The product of the real and imaginary parts of a holomorphic function is always harmonic.
(This page is intentionally left blank.)
3. The function

$$
f(z)=\frac{2 \sinh \frac{z}{2}}{e^{2 z}-1}
$$

has a Laurent series representation $\sum_{n=k}^{\infty} a_{n} z^{n}$, where $a_{k} \neq 0$, convergent on the punctured disk $\{0<|z|<R\}$ for some integer k and positive real number R.
(a) Find and classify all the isolated singularities of f. For each pole, state its order as well.
(b) Find the integer k, the value a_{k} and the maximum possible value of R, if exists.

Consider the polynomial $p(z)=z^{2020}-z^{10}+5 i z+2$.
(c) What is the number of zeros the polynomial p inside the annular domain $\{1<|z|<\pi\}$?
(This page is intentionally left blank.)
4. Let's prove the following integral identity \int^{2}

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{e^{-2 \pi i a x}}{\cosh \pi x} d x=\frac{1}{\cosh \pi a}, \tag{*}
\end{equation*}
$$

for any real number $a \in \mathbb{R}$ using the method of residues.
(a) Let $R>0$ be an arbitrarily large positive number and consider the positively oriented simple closed contour γ, a concatenation of the following four smooth curves:

$$
\begin{array}{ll}
\gamma_{1}=\{t \mid-R \leq t \leq R\}, & \gamma_{2}=\{R+i t \mid 0 \leq t \leq 2\} \\
\gamma_{3}=\{t+2 i \mid-R \leq t \leq R\}, & \\
\gamma_{4}=\{-R+i t \mid 0 \leq t \leq 2\} .
\end{array}
$$

Sketch the curve γ together with all the singularities of the function

$$
f(z)=\frac{e^{-2 \pi i a z}}{\cosh \pi z}
$$

enclosed by γ.
(b) Show that the integral of $f(z)$ along γ is $2\left(e^{\pi a}-e^{3 \pi a}\right)$.
(c) By taking the limit as $R \rightarrow \infty$, prove the integral identity (*) above.

[^1](This page is intentionally left blank.)
5. Let γ the positively oriented unit circle $\{|z|=1\}, U$ be the set $\{z \in$ $\mathbb{C}||z| \neq 1\}$, and $f: U \rightarrow \mathbb{C}$ be the function defined by
$$
f(z)=\oint_{\gamma} \frac{i w-1}{(w-z)^{2}} d w
$$
(a) State whether U is open, closed, bounded and/or connected. [6]
(b) Show that f is constant on each connected component of U and find its image.
(c) Evaluate the real integral
$$
\int_{0}^{2 \pi} e^{\sin x} \cos (\cos x) d x
$$
using the method of residues.
(This page is intentionally left blank.)
6. Consider the function $u(x, y)=e^{2 x} \sin 2 y+x$ on \mathbb{R}^{2}.
(a) Verify that the function is harmonic.
(b) Find the unique solution $f(z)$ to the equation $\operatorname{Re} f(x+i y)=$ $u(x, y)$ such that $f(\pi)=\pi$. Express your answer as a function of $z \in \mathbb{C}$ (no x or y).

We are given that a harmonic function $g(r, \theta)$ on the domain

$$
S=\{(r, \theta) \mid 0 \leq r<\pi,-\pi<\theta \leq \pi\} \subset \mathbb{R}^{2},
$$

written in polar coordinates, which extends continuously to the boundary ∂S. It is known that g satisfies the following inequalities:

$$
|g(\pi, \theta)| \leq 1, \text { if } 0 \leq \theta \leq \pi, \quad|g(\pi, \theta)| \leq 3, \text { if }-\pi<\theta \leq 0
$$

(c) Use the mean value property to show that that $|g(0, \theta)| \leq 2$. [8]
(d) Suppose $h(r, \theta)$ is another harmonic function on S satisfying $h(\pi, \theta)=$ $g(\pi, \theta)$ for all angles θ. Show that $h \equiv g$ on S.
(This page is intentionally left blank.)
7. Consider the following complex functions

$$
A(z)=e^{e^{z}}, \quad B(z)=\log (3 z+4) .
$$

(a) Find the extremal values of $|A(z)|$ on the closed rectangular region

$$
R=\{x+i y \mid 0 \leq x \leq \ln \pi,-\pi \leq y \leq \pi\} .
$$

State the corresponding points on R at which extremal values are attained.
(b) Find the derivative $A^{\prime}(z)$ of A and show that each maximum point of $|A(z)|$ on R is also a maximum point of $\left|A^{\prime}(z)\right|$ on R. What is the maximum value of $\left|A^{\prime}(z)\right|$ on R ?
(c) Find a primitive $C(z)$ of $B(z)$ and show that it can be written in the form of

$$
C(z)=(z+c) \log (3 z+4)-z
$$

for some constant $c \in \mathbb{C}$. Suggest a branch cut for $C(z)$.
(d) Evaluate the contour integral of B along the contour γ representing the polar graph

$$
r=\sin \left(\frac{\theta}{1262}\right), \quad 0 \leq \theta \leq 631 \pi
$$

with 0 as its starting point.
(This page is intentionally left blank.)

[^0]: ${ }^{1}$ If you plan on submitting handwritten answers, please copy the plagiarism statement above on your answer sheet.

[^1]: ${ }^{2}$ This identity says that the Fourier transform of $\cosh \pi x$ is itself.

