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• Instructor: Willie Rush Lim

• Due date: August 14th 2020, 11.59pm EST

• This test has 7 questions, each carrying different weights. The total
number of points is 200.

• The use of calculator or other similar aids such as Matlab and Wolfra-
mAlpha is prohibited during the test.

• Credit will be given for all questions attempted with clear explanation.

• Submit your answers as one pdf on blackboard.

• In case of technical difficulties, email lim.willie@stonybrook.edu.
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Plagiarism Statement1

I certify that my answers are my own work, based on my personal study
and/or material from lectures. I also certify that I have not copied in part or
whole, or otherwise plagiarised the work of other students and/or persons. I
acknowledge that students who plagiarize or otherwise engage in academic
dishonesty will face serious consequences, including grade reduction or course
failure.

Signature Date
[10]

1If you plan on submitting handwritten answers, please copy the plagiarism statement
above on your answer sheet.
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1. Let f(z) be the rational function

f(z) =
3i

1− 2z − 8z2
.

(a) Find the Laurent series representation of f defined on the annulus
{1 < |4z| < 2}. [10]

(b) Compute the residue of f at 0. [4]

Suppose γ is the closed curve parametrised by γ(t) = −eit cos t for
π
2
≤ t ≤ 3π

2
.

(b) Sketch the curve γ and find the winding number of f ◦ γ without
drawing the curve f(γ(t)). [10]
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2. Explain whether or not any of the following statements are true.

(a) The imaginary part of an entire function cannot be an entire func-
tion. [6]

(b) The integral of 1/z along the curve γ(t) = eit, −2π ≤ t ≤ π is πi
because [6]∫

γ

1

z
dz = Log(γ(π))− Log(γ(−2π)) = Log(−1)− Log(1) = πi.

(c) There is a non-constant entire function f such that f(n) = 0 for
all integers n. [6]

(d) The product of the real and imaginary parts of a holomorphic
function is always harmonic. [8]
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3. The function

f(z) =
2 sinh z

2

e2z − 1

has a Laurent series representation
∑∞

n=k anz
n, where ak 6= 0, conver-

gent on the punctured disk {0 < |z| < R} for some integer k and
positive real number R.

(a) Find and classify all the isolated singularities of f . For each pole,
state its order as well. [8]

(b) Find the integer k, the value ak and the maximum possible value
of R, if exists. [8]

Consider the polynomial p(z) = z2020 − z10 + 5iz + 2.

(c) What is the number of zeros the polynomial p inside the annular
domain {1 < |z| < π}? [12]
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4. Let’s prove the following integral identity2∫ ∞
−∞

e−2πiax

coshπx
dx =

1

cosh πa
, (c)

for any real number a ∈ R using the method of residues.

(a) Let R > 0 be an arbitrarily large positive number and consider
the positively oriented simple closed contour γ, a concatenation
of the following four smooth curves:

γ1 = {t | −R ≤ t ≤ R}, γ2 = {R + it | 0 ≤ t ≤ 2},
γ3 = {t+ 2i | −R ≤ t ≤ R}, γ4 = {−R + it | 0 ≤ t ≤ 2}.

Sketch the curve γ together with all the singularities of the func-
tion

f(z) =
e−2πiaz

cosh πz

enclosed by γ. [6]

(b) Show that the integral of f(z) along γ is 2(eπa − e3πa). [8]

(c) By taking the limit as R → ∞, prove the integral identity (c)
above. [14]

2This identity says that the Fourier transform of coshπx is itself.
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5. Let γ the positively oriented unit circle {|z| = 1}, U be the set {z ∈
C | |z| 6= 1}, and f : U → C be the function defined by

f(z) =

∮
γ

iw − 1

(w − z)2
dw.

(a) State whether U is open, closed, bounded and/or connected. [6]

(b) Show that f is constant on each connected component of U and
find its image. [10]

(c) Evaluate the real integral∫ 2π

0

esinx cos(cosx)dx

using the method of residues. [12]
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6. Consider the function u(x, y) = e2x sin 2y + x on R2.

(a) Verify that the function is harmonic. [6]

(b) Find the unique solution f(z) to the equation Ref(x + iy) =
u(x, y) such that f(π) = π. Express your answer as a function of
z ∈ C (no x or y). [10]

We are given that a harmonic function g(r, θ) on the domain

S = {(r, θ) | 0 ≤ r < π,−π < θ ≤ π} ⊂ R2,

written in polar coordinates, which extends continuously to the bound-
ary ∂S. It is known that g satisfies the following inequalities:

|g(π, θ)| ≤ 1, if 0 ≤ θ ≤ π, |g(π, θ)| ≤ 3, if − π < θ ≤ 0.

(c) Use the mean value property to show that that |g(0, θ)| ≤ 2. [8]

(d) Suppose h(r, θ) is another harmonic function on S satisfying h(π, θ) =
g(π, θ) for all angles θ. Show that h ≡ g on S. [8]

12



MAT 342 Summer II Final Examination

(This page is intentionally left blank.)

13



MAT 342 Summer II Final Examination

7. Consider the following complex functions

A(z) = ee
z

, B(z) = Log(3z + 4).

(a) Find the extremal values of |A(z)| on the closed rectangular region

R = {x+ iy | 0 ≤ x ≤ lnπ,−π ≤ y ≤ π}.

State the corresponding points on R at which extremal values are
attained. [8]

(b) Find the derivative A′(z) of A and show that each maximum point
of |A(z)| on R is also a maximum point of |A′(z)| on R. What is
the maximum value of |A′(z)| on R? [8]

(c) Find a primitive C(z) of B(z) and show that it can be written in
the form of

C(z) = (z + c)Log(3z + 4)− z

for some constant c ∈ C. Suggest a branch cut for C(z). [8]

(d) Evaluate the contour integral of B along the contour γ represent-
ing the polar graph

r = sin

(
θ

1262

)
, 0 ≤ θ ≤ 631π,

with 0 as its starting point. [10]
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