MAT 342

Applied Complex Analysis 2020 Summer II

Midterm

Question	1	2	3	4	5	6	Total
Grade							

- Instructor: Willie Rush Lim
- Due date: July 31st 2020, 11.59pm EST
- This test has 6 questions, each carrying different weights.
- The use of calculator or other similar aids such as Matlab and Wolframalpha is prohibited during the test.
- Credit will be given for all questions attempted with clear explanation.
- Submit your answers as one pdf on blackboard.
- In case of technical difficulties, email lim.willie@stonybrook.edu.

Plagiarism Statement ${ }^{11}$

I certify that my answers are my own work, based on my personal study and/or material from lectures. I also certify that I have not copied in part or whole, or otherwise plagiarised the work of other students and/or persons. I acknowledge that students who plagiarize or otherwise engage in academic dishonesty will face serious consequences, including grade reduction or course failure.

Signature

\qquad

[^0]1. (a) Find real numbers a and b such that $a+b i=$ p.v. $[-8 \pi]^{1 / 3}$. $\quad[4]$
(b) Consider the following statement.
$" \log (-z)^{2}=\log z^{2}$ because $(-z)^{2}=z^{2}$.
Therefore, $2 \log (-z)=2 \log z$."
Explain whether or not the statement is true.
(c) Consider the following statement.
"The rational function $\frac{p(z)}{q(z)}$, where p and q are co-prime non-constant polynomials, is holomorphic everywhere except at the set of zeros of q."
Does this explain if any primitive of $\frac{p(z)}{q(z)}$ is also holomorphic everywhere except at the zeros of q ? Explain why.
2. Every 2×2 real matrix $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ determines a complex function

$$
f_{M}(x+i y)=u_{M}(x, y)+i v_{M}(x, y),
$$

where real-valued functions u_{M} and v_{M} are determined by the following equation.

$$
\binom{u_{M}(x, y)}{v_{M}(x, y)}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y} .
$$

(a) Show that there are constants w_{1} and $w_{2} \in \mathbb{C}$ such that $f_{M}(z)=$ $w_{1} z+w_{2} \bar{z}$. What are these constants in terms of a, b, c, d ?
(b) Determine an equivalent condition on M such that f_{M} is an entire function.
3. Suppose f is an entire function. Show that any of the two criteria below imply that f is a constant function.
(a) $\operatorname{Im} f(z) \neq 0$ for all $z \in \mathbb{C}$ and $\frac{\operatorname{Ref}(z)}{\operatorname{Im} f(z)}$ is an entire function. [10]
(b) $-1 \leq \operatorname{Re} f(z) \leq 1$ for all $z \in \mathbb{C}$.
4. The rational function

$$
p(z)=\frac{1}{(z-i)^{4}+4}
$$

is holomorphic on the domain $\mathbb{C} \backslash\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ for some four distinct points a_{1}, a_{2}, a_{3}, and a_{4}.
(a) Find the values of a_{1}, a_{2}, a_{3}, and a_{4}.
(b) Use one of the Cauchy's formulas to evaluate the integral of $p(z)$ along γ, a positively oriented closed contour parametrising a rectangle with vertices $\pm i$ and $4 \pm i$. Show that this integral can be expressed in the form of

$$
\frac{\pi}{c}(a+i b)
$$

where a, b and c are integers.
5. Evaluate the integral of f along a contour γ where f and γ are given as follows.
(a) $f(x+i y)=e^{y} e^{1-i x}$ along γ, a positively oriented ellipse determined by the equation $r=\cos (2 \theta)+2$.
[6]
(b) $f(z)=2 z^{3}\left(z^{4}-1\right)^{-2}$ along $\gamma(t)=t+i \sqrt{t}$ where $0 \leq t \leq 1$. [10]
6. Let

$$
B(z)=\frac{i+2 z}{4-2 i z} .
$$

(a) Find the smallest positive real value M such that for every z on the closed unit disk $\overline{\mathbb{D}},|B(z)| \leq M$.
(b) A particle on the complex plane is trapped within a wall built along the unit circle. It travels straight from $-i$ to $e^{3 \pi i / 4}$ and then bounces at $e^{3 \pi i / 4}$ to complete its travel from $e^{3 \pi i / 4}$ to 1 . Denote by γ the curve representing the trajectory of the particle. Without evaluating the integral, show how we can obtain the following estimate.

$$
\left|\int_{\gamma} B(z) d z\right| \leq \sqrt{2+\sqrt{2}}
$$

(c) Evaluate the integral

$$
\int_{\gamma} B(z) d z
$$

leaving your answer in the form of of $a+i b$ for some real numbers a and b.

[^0]: ${ }^{1}$ If you plan on submitting handwritten answers, please copy the plagiarism statement above on your answer sheet.

