Problem Set 1

Note: Assessed problems (and sub-problems) are marked by the asterisk *.

1. * Express and simplify each of the following complex numbers to the forms x + iy for some $x, y \in \mathbb{R}$ and $re^{i\theta}$ for some $r > 0, \theta \in (-\pi, \pi]$.

$$\begin{array}{ll} (a)^* \ \frac{1+i}{1-i}, \\ (c)^* \ \overline{(\sqrt{3}-i)^5}, \end{array} & (b) \ \frac{|3-4i|}{3-4i} + \frac{1}{2-i}, \\ (d) \ 2e^{2\pi i/3} + 2e^{4\pi i/3}. \end{array}$$

- 2. * Show that for every $z, w \in \mathbb{C}$, $||z| |w|| \le |z w|$.
- 3. Define the operator $\langle \cdot, \cdot \rangle : \mathbb{C} \times \mathbb{C} \to \mathbb{C}$ by $\langle z, w \rangle = z\overline{w}$. Show that if z = x + iy and w = u + iv, then

$$\operatorname{Re}\langle z, w \rangle = (x, y) \cdot (u, v),$$

where \cdot denotes the usual dot product of vectors in \mathbb{R}^2 . Moreover, show that $\langle \cdot, \cdot \rangle$ is a Hermitian inner product on \mathbb{C} . That is,

- $\langle z, w \rangle = \overline{\langle w, z \rangle},$
- $\langle z, z \rangle \ge 0$ and equality holds if and only if z = 0.
- 4. * Show that for every $z, w \in \mathbb{C}$,

$$|z \pm w|^2 = |z|^2 + |w|^2 \pm 2\operatorname{Re}(z\bar{w}).$$

Hence, prove the following identity:

$$|z+w|^2 - |z-w|^2 = 4\operatorname{Re}(z\bar{w}).$$

- 5. Let n be any integer greater than 2 and $w = e^{2\pi i/n}$.
 - (a) Show that $1 + w + w^2 + \dots w^{n-1} = 0$.
 - (b) Hence, prove the following identity:

$$\cos\left(\frac{2\pi}{n}\right) + \cos\left(\frac{4\pi}{n}\right) + \ldots + \cos\left(\frac{2(n-1)\pi}{n}\right) = 0$$

- 6. * Find all solutions to the equation $z^4 + 8 8i\sqrt{3} = 0$.
- 7. Let's find the exact value of $\alpha = \cos(\frac{2\pi}{5})$ by following the steps below.

- (a) Express α and α^2 as a polynomial of $w = e^{2\pi i/5}$.
- (b) Compute the value $w^4 + w^3 + w^2 + w + 1$.
- (c) Show that $p\alpha^2 + q\alpha + r = 0$ for some integers p, q, and r.
- (d) Find α .
- 8. * Describe and sketch the sets of complex numbers $z = re^{i\theta} \in \mathbb{C}$ determined by the following conditions:

$$\begin{aligned} (a)^* \ r &= \sin(3\theta) + 1, \\ (c)^* \ \mathrm{Re}\left(\frac{z-i}{z+i}\right) < 0, \\ (e)^* \ \mathrm{Im}z^2 < 0 \ \mathrm{and} \ \mathrm{Im}(z+1+i)^2 < 0. \end{aligned}$$
 (b) $z^2 + \bar{z}^2 = 2, \\ (d) \ \mathrm{Im}\left(\frac{z-i}{z+i}\right) = 0, \end{aligned}$

- 9. * For each of the five sets in Exercise 8 above, determine whether or not they are open, closed, bounded, connected, simply connected or multiply connected.
- 10. For any sequence of complex numbers z_n , show that $z_n \to 0$ if and only if $|z_n| \to 0$.
- 11. Is it true that for any sequence of real numbers $r_n > 0$ and $\theta_n \in (-\pi, \pi]$, $r_n e^{i\theta_n} \to r e^{i\theta}$ if and only if $r_n \to r$ and $\theta_n \to \theta$? Explain why.
- 12. * Show that $f(x + iy) = x^2 y^2 + 2ixy$ is an entire function.
- 13. * Show that the function $f(z) = |z|^2$ has a derivative at 0 but is not holomorphic on any domain of \mathbb{C} .