Problem Set 1

Note: Assessed problems (and sub-problems) are marked by the asterisk *.

1. * Express and simplify each of the following complex numbers to the forms $x+i y$ for some $x, y \in \mathbb{R}$ and $r e^{i \theta}$ for some $r>0, \theta \in(-\pi, \pi]$.
$(a)^{*} \frac{1+i}{1-i}$,
(b) $\frac{|3-4 i|}{3-4 i}+\frac{1}{2-i}$,
$(c)^{*} \overline{(\sqrt{3}-i)^{5}}$,
(d) $2 e^{2 \pi i / 3}+2 e^{4 \pi i / 3}$.
2. * Show that for every $z, w \in \mathbb{C},||z|-|w|| \leq|z-w|$.
3. Define the operator $\langle\cdot, \cdot\rangle: \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}$ by $\langle z, w\rangle=z \bar{w}$. Show that if $z=x+i y$ and $w=u+i v$, then

$$
\operatorname{Re}\langle z, w\rangle=(x, y) \cdot(u, v)
$$

where • denotes the usual dot product of vectors in \mathbb{R}^{2}. Moreover, show that $\langle\cdot, \cdot\rangle$ is a Hermitian inner product on \mathbb{C}. That is,

- $\langle z, w\rangle=\overline{\langle w, z\rangle}$,
- $\langle z, z\rangle \geq 0$ and equality holds if and only if $z=0$.

4. * Show that for every $z, w \in \mathbb{C}$,

$$
|z \pm w|^{2}=|z|^{2}+|w|^{2} \pm 2 \operatorname{Re}(z \bar{w})
$$

Hence, prove the following identity:

$$
|z+w|^{2}-|z-w|^{2}=4 \operatorname{Re}(z \bar{w}) .
$$

5. Let n be any integer greater than 2 and $w=e^{2 \pi i / n}$.
(a) Show that $1+w+w^{2}+\ldots w^{n-1}=0$.
(b) Hence, prove the following identity:

$$
\cos \left(\frac{2 \pi}{n}\right)+\cos \left(\frac{4 \pi}{n}\right)+\ldots+\cos \left(\frac{2(n-1) \pi}{n}\right)=0
$$

6. ${ }^{*}$ Find all solutions to the equation $z^{4}+8-8 i \sqrt{3}=0$.
7. Let's find the exact value of $\alpha=\cos \left(\frac{2 \pi}{5}\right)$ by following the steps below.
(a) Express α and α^{2} as a polynomial of $w=e^{2 \pi i / 5}$.
(b) Compute the value $w^{4}+w^{3}+w^{2}+w+1$.
(c) Show that $p \alpha^{2}+q \alpha+r=0$ for some integers p, q, and r.
(d) Find α.
8. * Describe and sketch the sets of complex numbers $z=r e^{i \theta} \in \mathbb{C}$ determined by the following conditions:
$(a)^{*} r=\sin (3 \theta)+1$,
(b) $z^{2}+\bar{z}^{2}=2$,
(c)* $\operatorname{Re}\left(\frac{z-i}{z+i}\right)<0$,
(d) $\operatorname{Im}\left(\frac{z-i}{z+i}\right)=0$,
$(e)^{*} \operatorname{Im} z^{2}<0$ and $\operatorname{Im}(z+1+i)^{2}<0$.
9. * For each of the five sets in Exercise 8 above, determine whether or not they are open, closed, bounded, connected, simply connected or multiply connected.
10. For any sequence of complex numbers z_{n}, show that $z_{n} \rightarrow 0$ if and only if $\left|z_{n}\right| \rightarrow 0$.
11. Is it true that for any sequence of real numbers $r_{n}>0$ and $\theta_{n} \in(-\pi, \pi]$, $r_{n} e^{i \theta_{n}} \rightarrow r e^{i \theta}$ if and only if $r_{n} \rightarrow r$ and $\theta_{n} \rightarrow \theta$? Explain why.
12. * Show that $f(x+i y)=x^{2}-y^{2}+2 i x y$ is an entire function.
13. * Show that the function $f(z)=|z|^{2}$ has a derivative at 0 but is not holomorphic on any domain of \mathbb{C}.
