Problem Set 2

Assessed problems (and sub-problems) are marked by the asterisk *. All closed curves are assumed to be positively oriented, unless stated otherwise.

- 1. * Prove that if a function f(z) is holomorphic on some domain U, then $\overline{f(\overline{z})}$ is also holomorphic on U.
- 2. Show that the Wirtinger derivatives of a differentiable function f(z) in polar coordinates (r, θ) , where $z = re^{i\theta}$, are

$$\frac{\partial f}{\partial z} = \frac{1}{2z} \left(r \frac{\partial f}{\partial r} - i \frac{\partial f}{\partial \theta} \right), \qquad \frac{\partial f}{\partial \bar{z}} = \frac{1}{2\bar{z}} \left(r \frac{\partial f}{\partial r} + i \frac{\partial f}{\partial \theta} \right).$$

Hence, show that the principal logarithm Log is holomorphic on $\mathbb{C}\setminus(-\infty, 0]$ and has derivative z^{-1} .

- 3. * Show that every holomorphic function $f: U \to \mathbb{C}$ on some domain U is a constant function on U if it satisfies $f(z) = \overline{f(z)}$ for all $z \in U$.
- 4. Show that e^z is a biholomorphism (i.e. holomorphic bijection with holomorphic inverse) from the infinite strip $\{x+iy | x \in \mathbb{R}, -\pi < y < \pi\}$ onto the domain $\mathbb{C} \setminus (-\infty, 0]$.
- 5. Find the preimage of $(-\infty, 0]$ under the function $f(z) = 1 \frac{1}{z}$. Hence or otherwise, suggest a branch cut for the function $\log(1 \frac{1}{z})$.
- 6. * Prove that the inverse of $\tanh z$ is the multivalued function

$$\frac{1}{2}\log\frac{1+z}{1-z}$$

7. * Find all possible values of the following.

(a)*
$$\log(-1-i)$$
, (b) π^i ,
(c) $\cos^{-1}i$, (d) $i^{\frac{-1+i\sqrt{3}}{2}}$

- 8. For n = 1, 2, 3, 4, sketch the closed curve $\gamma(t) = e^{2it} \sin(nt)$ for $0 \le t \le \pi$ and determine whether or not it is closed, simple and smooth.
- 9. * For each of the following cases, compute the integral of f(z) along γ .
 - (a) f(z) = Imz and γ is the line segment joining 0 and 3 + 4i,
 - (b) $f(z) = i\bar{z} + z^3$ and $\gamma(t) = 2e^{it}, \pi/2 \le t \le \pi$.

(c)* $f(z) = \operatorname{pv} z^i$ and $\gamma(t) = e^{it}, |t| \le \pi/2.$

10. Compute the length of the contour defined by

$$\gamma: [0, 2\pi] \to \mathbb{C}, \quad \gamma(t) = e^{-t}(\cos t + i \sin t).$$

11. * Let γ denote the line segment from 2i to 2. Show that

$$\left|\int_{\gamma} \frac{1}{(z-1)^3} dz\right| \le 8.$$

12. Use ML inequality to find an upper bound for the absolute value of

$$\oint_{\gamma} e^{\bar{z}} dz$$

where γ parametrizes the square with vertices 0, 2, 2 + 2i, and 2i.

- 13. * Find a primitive of the principal branch of z^i . Hence, use this to calculate the integral in Exercise 9.(c). Show that your answer can be written in the form of $(1 + i) \cosh(a)$ for some real number a.
- 14. By finding a primitive, evaluate each of the following integrals, where the path is taken to be any contour joining the indicated limits of integration.

(a)
$$\int_0^i z^2 + i \, dz$$
, (b) $\int_{-\pi}^{\pi} \sin(iz) dz$.

15. * Evaluate the integral

$$\oint_{\gamma} \frac{2}{2z^2 - z - 3} dz$$

where γ is a pentagon with vertices 0, 1 - i, 3, 2 + i, and 1 + i.