Problem Set 2

Assessed problems (and sub-problems) are marked by the asterisk *. All closed curves are assumed to be positively oriented, unless stated otherwise.

1. * Prove that if a function $f(z)$ is holomorphic on some domain U, then $\overline{f(\bar{z})}$ is also holomorphic on U.
2. Show that the Wirtinger derivatives of a differentiable function $f(z)$ in polar coordinates (r, θ), where $z=r e^{i \theta}$, are

$$
\frac{\partial f}{\partial z}=\frac{1}{2 z}\left(r \frac{\partial f}{\partial r}-i \frac{\partial f}{\partial \theta}\right), \quad \frac{\partial f}{\partial \bar{z}}=\frac{1}{2 \bar{z}}\left(r \frac{\partial f}{\partial r}+i \frac{\partial f}{\partial \theta}\right) .
$$

Hence, show that the principal logarithm Log is holomorphic on $\mathbb{C} \backslash(-\infty, 0]$ and has derivative z^{-1}.
3. * Show that every holomorphic function $f: U \rightarrow \mathbb{C}$ on some domain U is a constant function on U if it satisfies $f(z)=\overline{f(z)}$ for all $z \in U$.
4. Show that e^{z} is a biholomorphism (i.e. holomorphic bijection with holomorphic inverse) from the infinite strip $\{x+i y \mid x \in \mathbb{R},-\pi<y<\pi\}$ onto the domain $\mathbb{C} \backslash(-\infty, 0]$.
5. Find the preimage of $(-\infty, 0]$ under the function $f(z)=1-\frac{1}{z}$. Hence or otherwise, suggest a branch cut for the function $\log \left(1-\frac{1}{z}\right)$.
6. * Prove that the inverse of $\tanh z$ is the multivalued function

$$
\frac{1}{2} \log \frac{1+z}{1-z} .
$$

7. * Find all possible values of the following.
$(\mathrm{a})^{*} \log (-1-i)$,
(b) π^{i},
(c) $\cos ^{-1} i$,
(d) $i^{\frac{-1+i \sqrt{3}}{2}}$.
8. For $n=1,2,3,4$, sketch the closed curve $\gamma(t)=e^{2 i t} \sin (n t)$ for $0 \leq t \leq$ π and determine whether or not it is closed, simple and smooth.
9. * For each of the following cases, compute the integral of $f(z)$ along γ.
(a) $f(z)=\operatorname{Im} z$ and γ is the line segment joining 0 and $3+4 i$,
(b) $f(z)=i \bar{z}+z^{3}$ and $\gamma(t)=2 e^{i t}, \pi / 2 \leq t \leq \pi$.
$(\mathrm{c})^{*} f(z)=\mathrm{pv} z^{i}$ and $\gamma(t)=e^{i t},|t| \leq \pi / 2$.
10. Compute the length of the contour defined by

$$
\gamma:[0,2 \pi] \rightarrow \mathbb{C}, \quad \gamma(t)=e^{-t}(\cos t+i \sin t)
$$

11. ${ }^{*}$ Let γ denote the line segment from $2 i$ to 2 . Show that

$$
\left|\int_{\gamma} \frac{1}{(z-1)^{3}} d z\right| \leq 8
$$

12. Use ML inequality to find an upper bound for the absolute value of

$$
\oint_{\gamma} e^{\bar{z}} d z
$$

where γ parametrizes the square with vertices $0,2,2+2 i$, and $2 i$.
13. * Find a primitive of the principal branch of z^{i}. Hence, use this to calculate the integral in Exercise 9.(c). Show that your answer can be written in the form of $(1+i) \cosh (a)$ for some real number a.
14. By finding a primitive, evaluate each of the following integrals, where the path is taken to be any contour joining the indicated limits of integration.

$$
\text { (a) } \int_{0}^{i} z^{2}+i d z, \quad \text { (b) } \int_{-\pi}^{\pi} \sin (i z) d z
$$

15. * Evaluate the integral

$$
\oint_{\gamma} \frac{2}{2 z^{2}-z-3} d z
$$

where γ is a pentagon with vertices $0,1-i, 3,2+i$, and $1+i$.

