
Problem Set 3

Assessed problems (and sub-problems) are marked by the asterisk *. All
closed curves are assumed to be positively oriented, unless stated otherwise.

1. Evaluate the integral ∮
γ

1

4z2 + 9
dz.

for each of the following cases:

(a) γ is the rectangle with vertices ±2 and ±2− i,
(b) γ is the circle C(2 + 2i, 3),

(c)* γ(t) = πe−πit where 0 ≤ t ≤ 2.

2. * Use Cauchy’s formulas to compute and simplify the integral of f
along the circle C(0, 2) for each of the following functions.

(a) f(z) =
z + 2

(z − 1)(z − 3)
, (b)∗ f(z) =

ee
z

z − iπ
2

, (c)∗ f(z) =
sinh(πz)

z4
.

3. * Suppose an entire function f satisfies |f(z)| ≤ π|z| for all z ∈ C.

(a) Evaluate f ′′(z) for each z ∈ C using Cauchy’s inequality.

(b) Show that f must be a linear function az for some a ∈ D(0, π).

4. Let f be an entire function such that 0 < |f (6)(z)| ≤ 2020 for all z ∈ C.
Explain why f must be a polynomial and state its degree.

5. * Let f be an entire function such that |f(z)| ≥ 1 for all z ∈ C. Show
that f is constant.

6. Let’s prove Liouville’s theorem in a different way. Suppose f is a
bounded entire function. Pick any two distinct points z1, z2 ∈ C and
pick a large positive number R such that |z1|, |z2| < R.

(a) Show that there is some constant k > 0 such that∣∣∣ ∮
C(0,R)

f(z)

(z − z0)(z − z1)
dz
∣∣∣ ≤ kR

(R− |z0|)(R− |z1|)
.

(b) Apply Cauchy’s integral formula to the inequality above to show
that f(z1) = f(z2).
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7. Let

f(z) =

{
z2, if z ∈ D,
2, if 2 < |z| < 3,

be a function on the open set U = D ∪ {2 < |z| < 3}. Show that f is
a non-constant holomorphic function on U which attains a maximum.
Does this contradict the maximum modulus principle?

8. * Find all points on which the modulus of the function f(z) = z3 + 1
on the closed disk {|z| ≤ 2} attains its maximum value.

9. Find the smallest radius r > 0 of the disk D(0, r) containing the image
of the function e(1+i)z on the open square {x+ iy | 1 < x, y < π}.

10. * Argand was the first to rigorously prove the fundamental theorem of
algebra. We shall follow along his thought process.

(a) Prove D’Alembert’s lemma: for every polynomial f of degree d ≥
1, every point z0 such that f(z0) 6= 0 and every ε > 0, we can
always find a point z such that |z − z0| < ε and |f(z)| < |f(z0)|.

(b) Let f(z) =
∑d

n=0 anz
n be some polynomial where ad 6= 0. Show

that if R ≥ 1 is a real number satisfying

R ≥ 1 +
∑d−1

n=0 |an|
|ad|

,

then |f(z)| ≥ Rd−1 whenever |z| ≥ R.

(c) Use the two results above to prove the fundamental theorem of
algebra.
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