Problem Set 4

Assessed problems (and sub-problems) are marked by the asterisk *. All closed curves are assumed to be positively oriented, unless stated otherwise.

1. Find the Taylor series expansion of:
(a) ${ }^{*} f(z)=e^{2 \pi z}$ about 2π,
(a) $f(z)=\frac{1}{z^{2}+1}$ about 0 ,
(b) $f(z)=\sin z$ about $\frac{\pi}{2}$.
2. Suppose f is holomorphic function on a domain U. Show that if f is constant on some non-empty open subset $V \subset U$, then f is constant on U.
3. * Let f be an entire function which restricts to a real function $f: \mathbb{R} \rightarrow$ \mathbb{R} on the real axis. Show that for all $z \in \mathbb{C}, \overline{f(\bar{z})}=f(z)$. (Hint: refer to Problem set 2 Qn 1.)
4. Does $g(z)=\sum_{n=0}^{\infty} \frac{1}{z^{n}}$ define a holomorphic function on the domain $\{|z|>1\}$? Explain why.
5. Find the Laurent series expansion of:
(a) $f(z)=\frac{z}{z^{2}+1}$ about i,
(b) $f(z)=\frac{2}{z-2}+\frac{1}{4-z}$, convergent on $\{2<|z|<4\}$,
(c)* $f(z)=\frac{3-3 z}{2 z^{2}-5 z+2}$, convergent on $\left\{\frac{1}{2}<|z-1|<1\right\}$.
6. Find and classify all singularities of the following function.
(a) $\cot z$,
(b) $\frac{1}{\sin z-\sin (2 z)}$,
(c) $\frac{z^{2}+\cos (\pi z)}{z^{2}\left(z^{2}-1\right)}$.
7. * Suppose f and g are entire functions such that $|f(z)| \leq|g(z)|$ for all $z \in \mathbb{C}$. Show that all singularities of f / g are removable and that there is a constant $a \in \mathbb{C}$ such that $f(z)=a g(z)$ for all $z \in \mathbb{C}$.
8. (Schwarz Lemma) Let $f: \mathbb{D} \rightarrow \mathbb{D}$ be a holomorphic self map of the unit disk such that $f(0)=0$.
(a) Explain why $g(z)=f(z) / z$ is a well-defined holomorphic function on \mathbb{D},
(b) Show by maximum modulus principle that $\left|f^{\prime}(0)\right| \leq 1$ and $|f(z)| \leq$ $|z|$ for all $z \in \mathbb{D}$,
(c) Show that if $\left|f^{\prime}(0)\right|=1$ or $|f(w)|=|w|$ for some point $w \in \mathbb{D}^{*}$, then f is a rotation ${ }^{1}$
9. * Let γ be the curve parametrising the square with vertices $\pm \frac{\pi}{4}-\frac{\pi i}{4}$ and $\pm \frac{\pi}{4}+\frac{\pi i}{4}$. Sketch the image of γ under the function $\cos 2 z-1$ and use your sketch to find the number of zeros of $\cos 2 z-1$ enclosed by γ.
10. Show that for each $n \in \mathbb{N}$, the number of zeros of $e^{z-1}+2 z^{n}$ inside the unit disk \mathbb{D} is n.
11. * How many zeros does the polynomial $z^{5}+5 z+1$ have in the annular domain $\{1 \leq|z|<2\}$?
[^0]
[^0]: ${ }^{1}$ In particular, this lemma says that 0 is either an attracting fixed point $\left(\left|f^{\prime}(0)\right|<1\right)$ or f is a rotation $\left(\left|f^{\prime}(0)\right|=1\right)$.

