Problem Set 4

Assessed problems (and sub-problems) are marked by the asterisk *. All closed curves are assumed to be positively oriented, unless stated otherwise.

- 1. Find the Taylor series expansion of:
 - (a)* $f(z) = e^{2\pi z}$ about 2π ,
 - (a) $f(z) = \frac{1}{z^2+1}$ about 0,
 - (b) $f(z) = \sin z$ about $\frac{\pi}{2}$.
- 2. Suppose f is holomorphic function on a domain U. Show that if f is constant on some non-empty open subset $V \subset U$, then f is constant on U.
- 3. * Let f be an entire function which restricts to a real function $f : \mathbb{R} \to \mathbb{R}$ on the real axis. Show that for all $z \in \mathbb{C}$, $\overline{f(\overline{z})} = f(z)$. (Hint: refer to Problem set 2 Qn 1.)
- 4. Does $g(z) = \sum_{n=0}^{\infty} \frac{1}{z^n}$ define a holomorphic function on the domain $\{|z| > 1\}$? Explain why.
- 5. Find the Laurent series expansion of:
 - (a) $f(z) = \frac{z}{z^2+1}$ about i,
 - (b) $f(z) = \frac{2}{z-2} + \frac{1}{4-z}$, convergent on $\{2 < |z| < 4\}$,
 - (c)* $f(z) = \frac{3-3z}{2z^2-5z+2}$, convergent on $\{\frac{1}{2} < |z-1| < 1\}$.
- 6. Find and classify all singularities of the following function.

(a)
$$\cot z$$
, (b) $\frac{1}{\sin z - \sin(2z)}$, (c) $\frac{z^2 + \cos(\pi z)}{z^2(z^2 - 1)}$

- 7. * Suppose f and g are entire functions such that $|f(z)| \leq |g(z)|$ for all $z \in \mathbb{C}$. Show that all singularities of f/g are removable and that there is a constant $a \in \mathbb{C}$ such that f(z) = ag(z) for all $z \in \mathbb{C}$.
- 8. (Schwarz Lemma) Let $f : \mathbb{D} \to \mathbb{D}$ be a holomorphic self map of the unit disk such that f(0) = 0.
 - (a) Explain why g(z) = f(z)/z is a well-defined holomorphic function on \mathbb{D} ,

- (b) Show by maximum modulus principle that $|f'(0)| \le 1$ and $|f(z)| \le |z|$ for all $z \in \mathbb{D}$,
- (c) Show that if |f'(0)| = 1 or |f(w)| = |w| for some point $w \in \mathbb{D}^*$, then f is a rotation¹.
- 9. * Let γ be the curve parametrising the square with vertices $\pm \frac{\pi}{4} \frac{\pi i}{4}$ and $\pm \frac{\pi}{4} + \frac{\pi i}{4}$. Sketch the image of γ under the function $\cos 2z 1$ and use your sketch to find the number of zeros of $\cos 2z 1$ enclosed by γ .
- 10. Show that for each $n \in \mathbb{N}$, the number of zeros of $e^{z-1} + 2z^n$ inside the unit disk \mathbb{D} is n.
- 11. * How many zeros does the polynomial $z^5 + 5z + 1$ have in the annular domain $\{1 \le |z| < 2\}$?

¹In particular, this lemma says that 0 is either an attracting fixed point (|f'(0)| < 1) or f is a rotation (|f'(0)| = 1).