Problem Set 5

Assessed problems (and sub-problems) are marked by the asterisk *. All closed curves are assumed to be positively oriented, unless stated otherwise.

1. * Compute the residues of the following functions.
(a) $\cot z$ at 0 ,
(b) $\frac{1}{\cos z+1}$ at π.
2. Evaluate along the smooth curve γ given below the contour integral of $f(z)$ for the following functions.
(a) $f(z)=\frac{3 z+1}{z^{2}+z-2}$,
(b) $f(z)=e^{1 / z}$,
(c) $f(z)=\csc (\pi z)$.

3. * Use the method of residues to compute the integral

$$
\int_{0}^{2 \pi} \frac{d \theta}{1-2 a \cos \theta+a^{2}}
$$

where $-1<a<1$.
4. Use the method of residues to compute the following improper integrals.
(a) $\int_{0}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x$,
$(\mathrm{b})^{*} \int_{-\infty}^{\infty} \frac{x \sin x}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x$.
(c) $\int_{-\infty}^{\infty} \frac{\sin x}{x-\pi} d x$,
(d) $\int_{0}^{\infty} \frac{1}{1+x^{4}} d x$,
(e) $\int_{0}^{\infty} \frac{1}{\sqrt{x}\left(x^{2}+9\right)} d x$,
$(\mathrm{f})^{*} \int_{0}^{\infty} \frac{\sqrt[3]{x}}{(x+1)^{3}} d x$.
5. Locate the principal branch cut for $\log \left(z^{2}+1\right)$. Use the method of residues to derive the following integration formula.

$$
\int_{0}^{\infty} \frac{\ln \left(x^{2}+1\right)}{x^{2}+1} d x=\pi \ln 2
$$

6. ${ }^{*}$ Show that if u is harmonic on a domain $W \subset \mathbb{R}^{2}$, the complex derivative $\frac{\partial U}{\partial z}$ of the complex function $U(x+i y)=u(x, y)$ on $W \subset \mathbb{C}$ is holomorphic on W.
7. * Show that the function

$$
u(x, y)=\frac{y}{x^{2}+y^{2}}
$$

is harmonic everywhere except at $(0,0)$.
8. Prove Liouville's theorem for harmonic functions: every bounded harmonic function on \mathbb{R}^{2} is constant.
9. * Prove a variant of the coincidence principle for harmonic functions: whenever two harmonic functions u_{1} and u_{2} on a domain $U \subset \mathbb{R}^{2}$ satisfy $u_{1} \equiv u_{2}$ on some non-empty open subset $V \subset U$, then $u_{1} \equiv u_{2}$ on U. (Hint: refer to Qn. 6 above and/or Problem set 4 Qn. 2.)
10. Let f be a holomorphic function on a domain U and let g be a harmonic function where $g(x, y)=|f(x+i y)|^{2}$ whenever $x+i y \in U$. Show that f is a constant function.
11. Let $0<r<1$ and $z=e^{i \theta}$ for some $\theta \in \mathbb{R}$.
(a) Show that the Laurent series expansion for the function $w \mapsto$ $r /(w-r)$ on the domain $\{|w|>|r|\}$ is $\sum_{n=1}^{\infty} r^{n} w^{-n}$,
(b) By considering the real and imaginary parts of the Laurent expansion above, prove the following identities:

$$
\frac{r(\cos \theta-r)}{1-2 r \cos \theta+r^{2}}=\sum_{n=1}^{\infty} r^{n} \cos n \theta, \quad \frac{r \sin \theta}{1-2 r \cos \theta+r^{2}}=\sum_{n=1}^{\infty} r^{n} \sin n \theta .
$$

(c) Hence, show that the Poisson kernel has the following cosine series expansion:

$$
P(r, \theta)=1+2 \sum_{n=1}^{\infty} r^{n} \cos n \theta
$$

12. Find the unique harmonic function $u(r, \theta)$ on the unit disk satisfying the following boundary conditions ${ }^{17}$.
(a) $\lim _{r \rightarrow 1} u(r, \theta)= \begin{cases}1, & \text { if } 0 \leq \theta<\frac{\pi}{2}, \\ 0, & \text { if otherwise. }\end{cases}$
(b) $\lim _{r \rightarrow 1} u(r, \theta)=\cos \theta$.
[^0]
[^0]: ${ }^{1}$ Perhaps it may be easier to solve parts (c) and (d) using the cosine series expansion of $P(r, \theta)$ in Exercise 7.

