Solutions 1

1. The Cartesian and polar forms are as follows.
(a) i,e™?, (b) 1 +1,/2e™/
(¢) —16v/3 + 16i, 32°™/°, (d) —2,2e™.

2. It’s sufficient to show |z| — |w| < |z —w| and |w| — |z| < |z — w]|. Both
come from triangle inequality.

3. Since (z,w) = 2w = (x + iy)(u — ) = (ur + vy) + i(uy — vx),

Re(z,w) = ur +vy = (2,y) - (u,v),
(w,z)

(z,2) =z

wz =wz = (z,w),
|2]* = 2% +y* > 0.

Equality on the last line holds if and only if  and y are 0.

4. We can use the identity |z|* = 2z. For every z,w € C,

lz+w)? = (z£w)(Z+w) =22+ ww £ 20 £ wz
= |2]* + |w|* £ (2w + zw) = |z|* + |w|* £ 2Re(zw).

Then,

|z 4+ w]? = |z — w]* = (|2]* + |w]’ + 2Re(zw)) — (|2[* + |w|* — 2Re(zw))
= 4Re(zw).

5. Since w # 1 and w" — 1 = 0,

l+w+... 0" " = = 0.

Take the real value of the equation above to get:

(27‘(‘) <47r) (Q(n— 1)7T>
cos|— ) +cos|—|+...+cos| ———— ] =0.
n n n

6. Since | — 8 4+ 8iv/3| = 16 and Arg(—8 + 8iv3) = Z, then 2*
24e2miBk+1)/3 for any integer k. Then,

z = 2B/ for ke {0,1,2,3}).

Simplifying the expression, the roots are +(v/3 + i) and £(—1 +iv/3).
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7. Let a = cos(%) and w = e

(a)
(b)
(c)
(d)

2mi/5

Re(w) = 2 = vl apd o? =

This is 0 from exercise 5.

o =

From part (b), we can pick p =4, ¢ =2, and r = —1.
By quadratic formula, o = H“[ We pick the + sign since a > 0.

8. T will only sketch (a); the rest should be fairly easy to illustrate.

(a)

(b)
(c)

It’s the boundary of a "flower” with three petals of maximum radius
2 centered at 0. See below.

When z = x + iy, the equation can be rewritten as 22 —y?> =1, a
hyperbola.

When 2z = z + iy, multiplying both top and bottom with the
complex conjugate zZ — ¢ gives you:

zZ—1 224+ —1-2ix

z4i 224 (y+1)2

The denominator is always positive unless z = —i¢, on which the
fraction is undefined. The real value is negative exactly when
z? 4+ y* — 1 < 0. This gives us the unit disk D = {|z] < 1}.

The imaginary part of the fraction above is 0 when —2ix = 0. This
gives us the set of purely imaginary numbers {iy | y € R\{—1}}.
We exclude —i since the fractional expression is not defined at
that point.



9.

10.

11.

12.

13.

(e) When z = z + iy, Imz? < 0 exactly when zy < 0 and Im(z +
1 +1i)* < 0 exactly when (z + 1)(y +1) < 0. This is the set
{r+iylz<-1Ly>0tU{z+wy|x>0y<—1}.

For each of the five sets in Exercise 9 above, determine whether or
not they are open, closed, bounded, connected, simply connected or
multiply connected.

)

) not open, closed, unbounded and disconnected.
c¢) open, not closed, bounded, simply connected.

) not open, not closed, unbounded, disconnected.

(e) open, not closed, unbounded, disconnected.

Refer to the definition of convergence of complex numbers.

No. Let r, = = 0,0, = (—1)"Z, and # = 0. Then, r,e" = (_1)%
converges to re = 0. Even though r, — r, unfornutately 6,, /4 6.

It is easier when f is rewritten as f(z) = 22. Then, for any a € C, the
derivative always exists:

= lim z 4+ a = 2a.

z—a 2 — Q z—a
Alternatively, you may show that Cauchy Riemann equations hold
throughout C.

Upon computing the derivative at an arbitrary point a € C,

. la+zP—|a* . zz+az+aez . Z .z
lm —— =lim—=limz+a+a—-=a+alim —.
z—0 z z—0 z z—0 z z—0 2
When a = 0, it is clear that the limit above exists and is equal to 0.
However, when a # 0, the limit does not exist since lim._,q = does not
exist. Since |z|? is only complex differentiable at one pomt it is not
holomorphic on any domain.



Solutions 2

1. If z = x4y and f(2) = u(z,y)+iv(z,y), then f(2) = p(x,y)+iq(z,y)
where p(z,y) = u(z, —y) and ¢(x,y) = —v(x, —y). It remains to show
that Cauchy Riemann equations still hold for the pair p and ¢ on the
domain U := {z | z € U}, which is the reflection of U in the real axis.

(Note that the correct domain for f(z) is U, not U.)

2. This is merely an exercise in multivariable calculus. Use the chain rules:

of _xof yof  of _yof x0f

dr  ror r200’ dy ror 1290

Log is holomorphic because

L=

27

d 1 g 0 ,
£Logz = 97 (TE + Z%) (Inr+1i0) =

Its derivative is

d 1 0 0 ) 1 1
ELOgZ = E (TE —l%) (1117""28) = 5(1 + ].) = ;

3. Let z = x + 4y and f(2) = u(z,y) + iv(z,y). If f(z) = f(2), then
v(z,y) = 0. By Cauchy Riemann equations, u, = v, = 0 and u, =
—v, = 0, so then u(x,y) = ¢ for some constant ¢ € R. Therefore,
f(z)=con U.

4. Let z = o+ iy. When x € R and |y| < 7, e®™¥ = e%e®. The function
is surjective because the image is

{e“eV |z eR, |yl <n}={re” |r >0,y <7} =C\(~0c0,0].

Since e is 2m-periodic with respect to y and since the height of the
strip is at most 27, e* is injective. The inverse of e* is Log(z) which is

holomorphic on C\(—oo, 0] with derivative z71.

5. The preimage is

{z|1 -2t € (00,01} ={(1 —2) ! |2 € (—0,0]} = [-1,0).

This can be taken as the branch cut because its image under 1 — 27!

is (—00, 0], the usual branch cut for log(z).



6—w

6. Let tanh™'(z) = w, then z = & This can be rewritten as

eWte~w"

_1+z
1 —z

€2w

Using logarithm, the expression becomes

e & (14H4k) (V3+i)

)
)

(c) Z(1+4k) —iln(1l+/2),
)

8. All are smooth and closed. The only simple ones are n = 1, 2.
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Figure 1: n =1 in blue, n = 2 in red, n = 3 in pink and n = 4 in green

9. The integrals are as follows:

(a) Use y(t) = (3 +4i)t for 0 <t < 1. Since 7/(t) = 5,

1 1
/Imzdz = / 4t - |y (t)|dt = / 20t dt = 10.
¥ 0 0

bt



(b) Since 7/(t) = 2ie®,

/ iZ+iz*dz = / (2ie™"+8e™)-2ie" dt = / —4+16ie*"dt = —2r.

¥ w/2 w/2

it

(c) Since 7/(t) = ie",

' /2 i ’ /2 )
/pv Z'dz :/ e'tos(e) et dy :/ e gy
5 —7/2 —7/2

_ ! (31D _ B0y = 2 T(je=m/2 4 jem/2)

-l
= (14 1) cosh(n/2).

10. Since /() = (—1 +i)e(='*)* the length of v is
2m
L(7) = / | — 1 +|dt = 27V/2.
0

11. The distance between the line segment ~ and the point 1 is 271/2, so

then
max |(z — 1) 7% = (min|z — 1)) = (27Y3)73 = 2v2.
zey

zEy

Since L(v) = |2i — 2| = 21/2, then by ML inequality,

‘/@_;1)3(&" <2V2-L(y) = 8.

12. Let 2 = z + iy € 7, then |e*| = ¢ < e? because 0 < x < 2. Therefore,

’/ezdz‘ < L(7) - max |e?| = 8¢
7

zEey

i+1
+1

13. One primitive is because by chain rule, on C\(—o0, 0],

z
]

i+1 i+1)Logz .
dz delitDLog _ i+l el DLogz _ (; 4 )4,

dz dz z

The curve v lies in the domain C\(—o0, 0] and it travels from —i to i.
Then,
' i1 _)itl 1
/pvz’dz: ,l —(,l) = ,
. i+ 1 1+ 1 1+
1—1

= T(ie_”/2 +ie™?) = (1 + i) cosh(m/2).

(Z'eiLogi . (_i)eiLog(fi))



14.

15.

Both integrands are entire functions. As such, the integrals are inde-
pendent of the choice of the contour.

(a) The integrand has primitive iz + 23/3. Then,
/i 2 +idz =iz + 2°/3], = —1—1i/3.
0
(b) The integrand has primitive i cosh z. Then,
/7T sin(iz) = icosh z|”_ = 0.

1 1
z—3/2 z+1

of the pentagon « but 3/2 is enclosed by ~, we apply Cauchy-Goursat
so that the integral is reduced to

2/ 1
— dz.
5/),2—3/2

By deformation theorem, we can replace v with any small circle cen-
tered at 3/2. The integral is then reduced to 4mi/5.

The integrand can be rewritten as % ( > Since —1 is outside




Solutions 3

1. By partial fractions, the integral can be rewritten as
i dz l dz
12 ), 2+ 150 12 ] 2z — 1.5

The singular points we need to keep our eye on are +1.5:.

(a) The rectangle does not enclose +1.5i. Both integrands are holo-
morphic along and inside . By Cauchy-Goursat, the integral is
0.

(b) The circle only encloses 1.5, but not —1.5¢. The first integral is 0
by Cauchy-Goursat. The second becomes _1% -2mi = . In total,
the integral is me.

(c) Check that 7 is a negatively oriented circle centered at 0 of radius
7, enclosing both +1.5¢. Therefore, the integral evaluates to

12—2~2m—1l—2.2m:o.

2. The following functions g are holomorphic along and inside the domain
enclosed by C(0,2).

(a) Apply Cauchy’s formula to g(z) = 222 at the point zp = 1. The
integral is

j{ 9(2) dz = 2mig(1l) = —3mi.
C(0,2) # — 1

(b) Apply Cauchy’s formula to g(z) = e at the point 2y = iw/2. The
integral is

f 9(2) dz = 2mig(i) = omie?”” = 2mie'.
c(0,2) ¢ — 1

(c) Apply Cauchy’s differentiation formula to get the 3'¢ derivative of
g(z) = sinh(7z) at the point zy = 0. The integral is

9(2) 2mi d® . )
9 g, = £ 2 (sinh _It
7{)(0’2) s S 2 (sinh(7z)) » 3



3. For any point 2y € C, radius > 0 and point w on the circle C(z, ),
we can apply triangle inequality to get |w| < |w — zo| + |20] = 7 + |20
and consequently |f(w)| < 7(r + |z0|). By Cauchy’s inequality,

7 (z)] < 22 nl)

2
Taking the limit as 7 — oo, the right hand side goes to 0. Since | f”(zo)]
is independent of r, f”(z9) = 0 for all z5. The primitive f’ must be
some constant a and the primitive f of f’ must be of the form az + b.
However, since |f(0)| < -0 =0, b must be 0.

r

4. Since £ is bounded and entire, it is a constant function of some value
a where |a| > 0. By taking primitive 6 times, f must be a polynomial

of degree 6 because it has a leading term %zﬁ.

5. The inequality implies that f(z) # 0 for all z, so 1/f(z) is a well-
defined entire function. Since |1/f(2)| < 1, it is bounded and therefore
constant. f is then constant too.

6. There is some constant M > 0 such that |f(z)| < M for all z € C. By
ML inequality,

f(2) f(2)
’ 7{*(0,}2) (2 — 20) (2 — Zl>dz =2l F2R | (2 — 20)(z — 21)
=2t R— M
min =g [(z — 20) (2 — 21)]
2rtM R

S ER-Ta)(B- o)

where the final inequality comes from triangle inequality. By taking
the limit as R — oo, this upper bound clearly goes to 0, so then

lim /(z)
Roo o r) (2 = 20)(2 — 21)

This integral can be separated by partial fractions and evaluated by
Cauchy’s integral formula.

ji(o,R) (z — Zﬁ)((zfz - Zl)dz N 20 i 21 [ﬁ(o,m foZio N fC(O,R) Zf_(zfil dz}
_ f(=) = f(=1)

2wz — 21)

dz = 0.

This expression is independent of R, so then it must be 0. Therefore

f(z0) = f(21).



7.

10.

It is holomorphic with derivative 2z on D) and 0 on the annulus {2 <
|z| < 3}. It attains maximum on the annulus with |f(z)| = 2. The set
U is disconnected and therefore the maximum modulus principle does
not apply.

. As f is entire, by maximum modulus principle, it is sufficient to see the

behavior of f on the circle {|z| = 2} to find maximum points. When
2 = 2¢" where t € R,
|23 +i| = [8e* + 1| = |(8cos 3t + 1) + i8sin 3t|

— [64 cos® 3t + 16 cos 3t + 1 + 64sin® 3t] > = [65 + 16 cos 31]"/
The real function cos 3t attains its maximum value 1 at ¢t = 0, j:%”.

At any of these values, we have |23 + 1| = 9, and this is attained by
z=2,—141i/3.

. The function e(!*9% is entire. By the maximum modulus principle, to

find the maximum value of e1*9# on the closed square {z +iy |1 <
x,y < m}, it is sufficient to look at the the function along the boundary
of the square. Let z = x + iy.

’6(1+i)z’ _ |€(xfy)+i(z+y)| — &Y.
The maximum of x — y is attained on the boundary of the square when

x = m and y = 1. Therefore, the smallest radius is r = e™ .

Part (a) follows from applying the minimum modulus principle on
D(zo, €). If the lemma weren’t true, it would in the most direct way con-
tradict the minimum modulus principle. Part (b) follows from triangle
inequality:

d—1 d—1
1F()] = Jaaz"] = lanz"] > aallz|* =) lan] 2|
n=0 n=0

d—1
> [z (mrrz\ -3 w) > | 2 R

n=0

For part (c), |f| must attain minimum on the compact disk D(0, R)
where R is from part (b). Let zy be a minimum point in this compact

disk. If f(z0) # 0, then it will contradict part (a). Therefore, f(z) = 0.
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Solutions 4

I (a) @7 = 7 en(em) = e 3o 2R oy,
(b) H% = 220:0(_22)”’
(c) sinz=cos(z—%5)=1+> ", ((_2713)! (z—T)2.

2. Apply the identity theorem on any sequence of distinct points in V'
converging to some point in V. Such a sequence always exists because
V' is non-empty and open.

3. Apply the identity theorem on f(Z) and f(z) as both functions agree

on R.
4. Yes. Let z = re” where r > 1. As N — oo, 2~ V~! — 0 because
|27V = r=N=1 — 0. Therefore,
1 — N1 1 2
1 n pr— 1‘ pu— pu—
Nl—r>noozz Novao 1—271 1—2z71 z—-1

5. (a) About i,

This Laurent series is convergent on {0 < |z —i| < 2}.
(b) About 0,




This Laurent series is convergent on {2 < |z| < 4}.
(c¢) About 1,

3—3z B 1 L 1
2225242 \1—-2z 2—2
1 n 1

-1

= > ()T 4> (21

n=—oo

This Laurent series is convergent on {3 < [z — 1] < 1}.

6. (a) The zeros of sin z are on 7n for n € Z, and none of these are zeros
of cos z. Each of them is simple, so then cot z has simple poles at
mn for n € Z.

(b) Singularities are at point z such that sin z = sin2z. This occurs

when sinz = 0, i.e. z = nw for n € Z, or when cosz = %, ie.
z = £% + 2mn for n € Z. Each of these are single poles of the
function.

(c) The zeros of the denominator are clearly 0 of order 2 and +1 of
order 1. The numerator does not have a zero at 0, but it has
zeros at +1. Therefore, 0 is a double pole and 1 are removable
singularities.

7. The singularities of f/g are removable because |f(2)/g(2)| < 1, i.e.
bounded. Assuch, f/g is a bounded entire function, which is a constant
function a for some a € C.

8. (a) Since f has a zero of order n > 1, g(z) is a well-defined holomor-
phic function with removable singularity at 0.

(b) Along |z| = r for any r < 1,

As r — 1, the upper bound converges to 1. Thus, the maximum
modulus of g along the boundary is 1 and by MMP, |g(z)| > 1.
This implies that |f(z)| < |z|. Looking at the Taylor series of f
should convince you that |f/(0)| = |¢g(0)] < 1.

12



9.

10.

11.

(c) If |f'(0) = 1 or |f(w)| = |w| for some point w € D*, then |g(w')| =
1 where w' is either 0 or w. As g attains maximum in D, it must
be a constant function a and therefore f(z) = az. Since either
|f/(0) =1 or |f(w)| = |wl|, then |a| = 1. This implies that a is of
the form ¢ and clearly f(z) = ez is a counterclockwise rotation
of the unit disk of angle 6.

It’s easier to look at the image of the four line segments individually.
Assume that the orientation of v is positive. Using Cartesian coordi-
nates z = x + iy, cos 2z — 1 = (cos 2x cosh 2y — 1) — i sin 2z sinh 2y.

e When v = £7, cos2z — 1 = —1 Fisinh2y.

The image of the x = —% side of the square is the same as that of
the z = —& side, which is a upward linear curve from —1—isinh
to —1 +isinh 7.

e When y = 47, cos2z — 1 = cos 2z cosh § — 1 F isin 2z sinh 7.
The image of the y = —£ side of the square is the same as that of
the y = —%i side, which is a downward elliptic arc with co-vertices

—1 +isinh § and rightmost vertex —1 + cosh 7.

The curve v has a winding number two about the origin. Since cos2z—1
has no poles, it must have exactly two zeros enclosed by ~. (It is in
fact a double zero at 0.)

When |z| = 1, || = ¢*! <1 < 2 = |22"]. By Rouche’s theorem,
e*~1 + 22" has the same number of zeros as 22", which is n, inside .

When |z| = 2, [bz + 1] < 5]z|+1 = 11 < 32 = |2°|. By Rouche’s
theorem, 2% + 5z + 1 has the same number of zeros as 2°, which is 5, in
D(0,2). When |z| =1, [2°| =1 < 4 = |52] — 1 < |5z + 1|. Therefore,
2® 4+ 5z + 1 has the same number of zeros as 5z + 1, which is 1, in ID.
In total, 25 4+ 52 + 1 has 4 zeros inside {1 < |z| < 2}.

13



Solutions 5

1. (a) The function f(z) = cot z has a pole of order 1 at 0. Then,

1
Resf(O)zo—limzcotz:limcosz — = 1.

1 20 2—0 sin 2

(b) cosz + 1 has a double zero at 7 since its first derivative — sin z
vanishes at 7 but the second derivative — cosz does not. The
function f(z) = -2 at has a pole of order 2 at 7. Then, using

cos z+1
the change of variables w = z — m,

1. d(z-m* . d(z—m)?
R =37 im - ——— =lm—-—=
. 2(z —m)(cosz + 1) +sin z(z — 7)°
= lim

z— (cos z + 1)2

. 2w(l —cosw) — w?sinw
= lim

w—0 (1 — cosw)?

2w - ) —w(w =Y L)
= lim e — 5

w—0 (T -5 + )

w ot

= lim 42 =0.

w—0 W _

2. (a) The function f(z) = % has single poles at 1 and —2. ~ has

winding number —1 about 1 and 0 about —2. Thus,
3z+1  8mi

dz = —1-2miR 1) = —2m i = .
éf(z) z miResf(1) mi lim ——— 3

(b) The function f(z) = e!/* has an essential singularity at 0 and at

that point, the residue is 1 since €'/ =1+ z~1 4+ % +.... Since
~ has winding number 1 about the origin,

7{ F(2)dz = 2mi,

(¢) The function f(z) = csc(mz) has single poles at every integer. =
has winding numbers 2, 1 and —1 about —1, 0 and 1 respectively.
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Therefore,

j{f(z)dz = 4miResf(—1) + 2miResf(0) — 2miRes f(1)
-

o 1 . ooz—1
=A4mi lim — + 273 lim — — 27 lim —

z——18In 27z 2—0 81n 27z z—18in 2wz
=44+2—-1=23.

3. By the change of variables z = €, the integral can be transformed into
a contour integral along the unit circle 7(#) = €? where 0 < 6§ < 2.

/Qﬂ dé _7{ i "
o l1—2acosb+a*> J, (az—1)(z—a)

The only pole of the integrand enclosed by 7 is a and it is a single pole.
By residue theorem,

/27r d 9 1 l 2m
= 2mi lim = :
o 1—2acosf+a? z=a(az—1) 1—a?

4. (a) The integrand f(z) is an even function and it has simple poles at
+¢ and +2i. Use semicircular closed contour v of radius R > 2.
The poles enclosed by v are ¢ and 2:. By residue theorem,

wo] 3

74 f(z)dz = 2mi (Resf(i) + Resf(2i)) = ... =

By ML inequality that the semicircle part v, of v vanishes to 0 as
R — oo because

22 TR3

CrnEyl s monmwon "

‘/ f(2)dz| < mR-max
7

z2€72

This leaves 7/3 as the value of the integral of f on (—o0,00).
Therefore,

/ o x? 7

de = —.
o (22+1)(a%+4) 6
(b) The integrand

Zeiz

(22+1)(22+4)

f(z) =

15



has simple poles at ¢ and 4+2¢. Use semicircular closed contour
of radius R > 2. The poles enclosed by ~ are ¢ and 2:i. By residue
theorem,

ff(z)dz = 2mi (Resf(i) + Resf(2i)) = ... = —(e” ' —e7?).

By Jordan’s lemma, the semicircle part 9 of v vanishes to 0 as
R — 00 because

z TR
FErOGEEd) S EonE -1

0.

Z€72

‘/ f(2)dz| < m-max

Therefore, the integral of f on (—oo, 00) is equal to that along 7.
By taking the imaginary part,

> Zsin z I
/0 Ern@EinE Tl —e)

Substitute y = x — 7 so that sinz = —siny. From the example
in class, this integral is —.

You can use the semicircular contour, but I'll use the sector con-
tour v with angle 7/2 instead. Let f(z) be the integrand; ~ will
enclose the single pole of f at e”™/%. Let’s use the same notation
as in the notes.

v
2v/2

Use the parametrisation y3(r) = ri as r varies from R to 0 and
obtain that

0 1 L |
Is= | —— idr = —i dr = —il,.
3 /R(m')‘urlw 2/0 Riy T

Also, I, — 0 as R — oo because by ML inequality

Iy = 2miResf(e™h) = ... = (1—1).

TR 1 TR
d‘<— < .
)/,YQf(Z) ds g Symion Y

Then, taking the limit R — oo and after rearranging, you should

obtain
/°° 1 dr — T
o 1+at 2V/2

16




(e) The function f(z) = m has simple poles at £3i. Pick the
branch cut to be arg z = 0. Use the keyhole contour to evaluate
the given integral /. Using the same notation as in the notes,

Io = 2mi[Resf(3i) + Resf(3i)] = ... = g g

Taking R — oo and ¢€,0 — 0, check that [; — [ and that

1 P 1 .
I == —d = - . 7/(27r_€)d
3 /ys A72(22 1 9) & /R Jrein—e) (12¢ilin—29 9)6 r

1 )
s ——— dz=—eT =1
/0 e i +9) T °

Check that by ML inequality, we have Iy, I, — 0. Therefore, this
gives 21 = Iy and upon simplifying, I = ﬁé'

(f) Let f(2) be the integrand. It has a triple pole at —1. Pick the
branch cut to be arg z = 0. Use the keyhole contour to evaluate
the given integral I. Using the same notation as in the notes,

Iy =2miResf(-1) = ... = ——p.v.z
2

Taking R — oo and €,0 — 0, check that I; — [ and I, — #I.
The latter is because

P 3 27r/3 €/2)
]3 = / / ez(27r—e)d7,
s (z+1)3 re~i e +1)3

2mi/3 _ 2m/3
— —e dr = 1.
/0 (r + 1)

Check that by ML inequality, we have I, I, —> 0. Therefore, this
gives 3 “f[ = [y and upon simplifying, I = 5 f

5. This is the trickiest question in the problem set. The usual branch cut
for log is [—00,0] and 2% + 1 € [—o0, 0] precisely when z? € [—o0, —1]
and therefore the branch cut is {ai|a > 1,a < —1}, a union of two
vertical rays. To evaluate the integral I asked, it is easier to split the
integrand into f 4 g where

Log(z + 1)

Log(z — 1)
22+1 '

fz) = 22+1

, o g(2) =
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The branch cut of f can be taken to be {ai|a <= 1} and that of g can
be taken to be {ai|a > 1}.

The integral of f along (—o0,00) can be evaluated using the usual
semicircular contour v = 3 U 7, where 73 = [—R, R] and v, is an
upper semicircle of radius R > 0. With the usual argument, you may
check that by ML inequality, the integral of f along -, vanishes to 0 as
R — oo. Therefore,

/°° Log(:c—l—z')dx _ lim / Log(z—l—i)dz
71

oo 2+ 1 R—o00 22 +1
o 0,
R—o0 "/ 2241
2.
= 9miResf(i) =...=rIn2 + %

To avoid the branch cut of g, we evaluate the integral of g using the
lower semicircular contour o = 07 U oy where oy is the segment from R
to —R and 0y = {Re | — 7 < 6 < 0} is the lower semicircle of radius
R > 0. With the usual argument, you may check that by ML inequality,
the integral of g along o, vanishes to 0 as R — oco. Therefore,

/ Log(x — Z)dx — lim Log(z — Z)dz

oo X241 Rooo f, 2241
L .
= — lim Mdz
R—oo [ 22+ 1
2.
= —2miResg(—i) =...=nln2 — %Z

Summing the two integrals together, we obtain

/ Log( =) 1 orino.
2+ 1

—00

Since the integrand is an even function, we can divide by two and obtain
that the integral we wanted to find all along is indeed 7 1n 2.

. You can check that U, = %Uw + 1 (—%Uy) satisfies Cauchy-Riemann
equations. Alternatively, you may check that the Laplacian can be
expressed using Wirtinger derivatives:
0? 0? 0 0
=5 +ta5; =455
ox?  Oy? 0z 0%z
This implies that %Uz = Z—llAU = 0, i.e. U, is holomorphic.
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7. This is another calculus exercise. Compute the Laplacian accordingly
and show that it vanishes to 0. At (0,0), the function is not even
continuous, since

0 y

My V7T e

8. Let u(z,y) be a bounded harmonic function on R?. Pick any harmonic
conjugate v of u. Then, f = u+4v is an entire function and so is e/(*).
Since u is bounded, so is |ef(*)| = ¢(®¥) . By Liouville, /), f(z) and
ultimately u are constant.

9. The difference u = u; — us is harmonic on U and vanishes on the whole
subset V. Since u, is holomorphic on U and vanishes on the whole
V, then u, = 0 on U by the identity theorem. Since 2u, = u, — iu,,
then u, = u, = 0, i.e. u is a constant function, so it must be the zero
function.

10. Let f = u+iv where u and v are real-valued functions, then g = u?+4v2.
Using harmonicity of v and v,

9,
Ag 2uuy, + 2vv,) + a—(2uuy + 2vv,)
Y

= %(
= 22Uy, + 2ui + 200, + ZUi + 2uty, + 2u§ + 200y, + 21}5

= 20(Usg + Uyy) + 20(Vag + Vyy) 4 2(ul + Ul + V3 + V)

= 2(ul +ul +v2 + v2).

Since g is harmonic, the expression above is 0 and therefore, u, = u, =
vy = v, = 0 on U. This shows that f is constant.

11. <a) wr—r = %# = ﬁ ZnZO (5) = ZnZl rtwT".

(b) Let w = z = €. Then,

T r r(e”® —r)  r(cosf —r) —irsind

w—r v —r |ei? — r|2 1 —2rcosf +r?

and by de Moivre’s theorem,

Z " = Z r™ (cos(n@) — isin(nd))

= (Z r" cos(n@)) —1 (Z r sin(n9)> :
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Comparing the real and imaginary parts should give the equations
we wanted.

(c¢) By now, this is just some basic algebraic manipulation inferior to
everything else you've done.

12. (a) This example is similar to the one done in class.

1 w/2 1 o
u(r,g)ZQ—/ P(r,t —0)dt = 2tan™" (1+rtant 29)
7 Jo —r 0

1 1 — 20 1 1 0
= —tan ! +rtanﬂ + ~tan~! +rtan— .
T 1—r 4 T 1—7r 2

w/2

(b) Use the cosine series on Qn 11 to integrate.

1 2T
u(r, 0) = 2—/ P(r.t — 0) cost dt
T Jo

_ 1 7 (1 + Z 2r" cos(n(t — 9))) cost dt

2w
0 n>1

1 2m 1 2m
— tdt+ — " t—0 tdt
cost dt + - Z r /0 cos(n( )) cos

Cor
0 n>1

= % 2 r" /:W cos(n(t — @) +t) + cos(n(t — 0) — t) dt

=rcosf.

(Yes... the corresponding holomorphic function f such that Ref =
u is just the identity function f(z) = z.)
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