
Solutions 1

1. The Cartesian and polar forms are as follows.

(a) i, eiπ/2, (b) 1 + i,
√

2eiπ/4

(c) − 16
√

3 + 16i, 32e5πi/6, (d) − 2, 2eπi.

2. It’s sufficient to show |z| − |w| ≤ |z −w| and |w| − |z| ≤ |z −w|. Both
come from triangle inequality.

3. Since 〈z, w〉 = zw̄ = (x+ iy)(u− iv) = (ux+ vy) + i(uy − vx),

Re〈z, w〉 = ux+ vy = (x, y) · (u, v),

〈w, z〉 = wz̄ = w̄z = 〈z, w〉,
〈z, z〉 = zz̄ = |z|2 = x2 + y2 ≥ 0.

Equality on the last line holds if and only if x and y are 0.

4. We can use the identity |z|2 = zz̄. For every z, w ∈ C,

|z ± w|2 = (z ± w)(z̄ ± w̄) = zz̄ + ww̄ ± zw̄ ± wz̄
= |z|2 + |w|2 ± (zw̄ + zw̄) = |z|2 + |w|2 ± 2Re(zw̄).

Then,

|z + w|2 − |z − w|2 =
(
|z|2 + |w|2 + 2Re(zw̄)

)
−
(
|z|2 + |w|2 − 2Re(zw̄)

)
= 4Re(zw̄).

5. Since w 6= 1 and wn − 1 = 0,

1 + w + . . . wn−1 =
wn − 1

w − 1
= 0.

Take the real value of the equation above to get:

cos

(
2π

n

)
+ cos

(
4π

n

)
+ . . .+ cos

(
2(n− 1)π

n

)
= 0.

6. Since | − 8 + 8i
√

3| = 16 and Arg(−8 + 8i
√

3) = 2π
3

, then z4 =
24e2πi(3k+1)/3 for any integer k. Then,

z = 2eπi(3k+1)/6, for k ∈ {0, 1, 2, 3}.

Simplifying the expression, the roots are ±(
√

3 + i) and ±(−1 + i
√

3).

1



7. Let α = cos(2π
5

) and w = e2πi/5.

(a) α = Re(w) = w+w̄
2

= w+w4

2
and α2 = w2+w3+2

4
.

(b) This is 0 from exercise 5.

(c) From part (b), we can pick p = 4, q = 2, and r = −1.

(d) By quadratic formula, α = −1±
√

5
4

. We pick the + sign since α > 0.

8. I will only sketch (a); the rest should be fairly easy to illustrate.

(a) It’s the boundary of a ’flower’ with three petals of maximum radius
2 centered at 0. See below.

(b) When z = x+ iy, the equation can be rewritten as x2 − y2 = 1, a
hyperbola.

(c) When z = x + iy, multiplying both top and bottom with the
complex conjugate z̄ − i gives you:

z − i
z + i

=
x2 + y2 − 1− 2ix

x2 + (y + 1)2
.

The denominator is always positive unless z = −i, on which the
fraction is undefined. The real value is negative exactly when
x2 + y2 − 1 < 0. This gives us the unit disk D = {|z| < 1}.

(d) The imaginary part of the fraction above is 0 when−2ix = 0. This
gives us the set of purely imaginary numbers {iy | y ∈ R\{−1}}.
We exclude −i since the fractional expression is not defined at
that point.
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(e) When z = x + iy, Imz2 < 0 exactly when xy < 0 and Im(z +
1 + i)2 < 0 exactly when (x + 1)(y + 1) < 0. This is the set
{x+ iy | x < −1, y > 0} ∪ {x+ iy | x > 0, y < −1}.

9. For each of the five sets in Exercise 9 above, determine whether or
not they are open, closed, bounded, connected, simply connected or
multiply connected.

(a) not open, compact, connected, multiply connected.

(b) not open, closed, unbounded and disconnected.

(c) open, not closed, bounded, simply connected.

(d) not open, not closed, unbounded, disconnected.

(e) open, not closed, unbounded, disconnected.

10. Refer to the definition of convergence of complex numbers.

11. No. Let rn = 1
n
, r = 0, θn = (−1)n π

2
, and θ = 0. Then, rne

iθn = (−1)ni
n

converges to reiθ = 0. Even though rn → r, unfornutately θn 6→ θ.

12. It is easier when f is rewritten as f(z) = z2. Then, for any a ∈ C, the
derivative always exists:

f ′(a) = lim
z→a

z2 − a2

z − a
= lim

z→a
z + a = 2a.

Alternatively, you may show that Cauchy Riemann equations hold
throughout C.

13. Upon computing the derivative at an arbitrary point a ∈ C,

lim
z→0

|a+ z|2 − |a|2

z
= lim

z→0

zz̄ + āz + az̄

z
= lim

z→0
z̄ + ā+ a

z̄

z
= ā+ a lim

z→0

z̄

z
.

When a = 0, it is clear that the limit above exists and is equal to 0.
However, when a 6= 0, the limit does not exist since limz→0

z̄
z

does not
exist. Since |z|2 is only complex differentiable at one point, it is not
holomorphic on any domain.
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Solutions 2

1. If z = x+ iy and f(z) = u(x, y)+ iv(x, y), then f(z̄) = p(x, y)+ iq(x, y)
where p(x, y) = u(x,−y) and q(x, y) = −v(x,−y). It remains to show
that Cauchy Riemann equations still hold for the pair p and q on the
domain Ū := {z̄ | z ∈ U}, which is the reflection of U in the real axis.
(Note that the correct domain for f(z̄) is Ū , not U .)

2. This is merely an exercise in multivariable calculus. Use the chain rules:

∂f

∂x
=
x

r

∂f

∂r
− y

r2

∂f

∂θ
,

∂f

∂y
=
y

r

∂f

∂r
+
x

r2

∂f

∂θ
.

Log is holomorphic because

d

dz̄
Logz =

1

2z̄

(
r
∂

∂r
+ i

∂

∂θ

)
(ln r + iθ) =

1

2z̄
(1− 1) = 0.

Its derivative is

d

dz
Logz =

1

2z

(
r
∂

∂r
− i ∂

∂θ

)
(ln r + iθ) =

1

2z
(1 + 1) =

1

z
.

3. Let z = x + iy and f(z) = u(x, y) + iv(x, y). If f(z) = f(z), then
v(x, y) ≡ 0. By Cauchy Riemann equations, ux = vy ≡ 0 and uy =
−vx ≡ 0, so then u(x, y) = c for some constant c ∈ R. Therefore,
f(z) ≡ c on U .

4. Let z = x + iy. When x ∈ R and |y| < π, ex+iy = exeiy. The function
is surjective because the image is

{exeiy | x ∈ R, |y| < π} = {reiy | r > 0, |y| < π} = C\(−∞, 0].

Since eiy is 2π-periodic with respect to y and since the height of the
strip is at most 2π, ez is injective. The inverse of ez is Log(z) which is
holomorphic on C\(−∞, 0] with derivative z−1.

5. The preimage is

{z | 1− z−1 ∈ (−∞, 0]} = {(1− x)−1 | x ∈ (−∞, 0]} = [−1, 0).

This can be taken as the branch cut because its image under 1 − z−1

is (−∞, 0], the usual branch cut for log(z).
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6. Let tanh−1(z) = w, then z = ew−e−w
ew+e−w

. This can be rewritten as

e2w =
1 + z

1− z
Using logarithm, the expression becomes

w =
1

2
log

1 + z

1− z
.

7. Here, k represents any integer.

(a) 1
2

ln 2 + iπ
4
(8k − 3),

(b) ei lnπ,

(c) π
2
(1 + 4k)− i ln(1 +

√
2),

(d) e−
π
8

(1+4k)(
√

3+i).

8. All are smooth and closed. The only simple ones are n = 1, 2.

Figure 1: n = 1 in blue, n = 2 in red, n = 3 in pink and n = 4 in green

9. The integrals are as follows:

(a) Use γ(t) = (3 + 4i)t for 0 ≤ t ≤ 1. Since γ′(t) = 5,∫
γ

Imzdz =

∫ 1

0

4t · |γ′(t)|dt =

∫ 1

0

20t dt = 10.
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(b) Since γ′(t) = 2ieit,∫
γ

iz̄+iz2dz =

∫ π

π/2

(2ie−it+8e3it)·2ieitdt =

∫ π

π/2

−4+16ie4itdt = −2π.

(c) Since γ′(t) = ieit,∫
γ

pv zidz =

∫ π/2

−π/2
eiLog(eit) · ieitdt =

∫ π/2

−π/2
iet(−1+i)dt

=
i

−1 + i
(e

π
2

(−1+i) − e
π
2

(1−i)) =
1− i

2
(ie−π/2 + ieπ/2)

= (1 + i) cosh(π/2).

10. Since γ′(t) = (−1 + i)e(−1+i)t, the length of γ is

L(γ) =

∫ 2π

0

| − 1 + i|dt = 2π
√

2.

11. The distance between the line segment γ and the point 1 is 2−1/2, so
then

max
z∈γ
|(z − 1)−3| = (min

z∈γ
|z − 1|)−3 = (2−1/2)−3 = 2

√
2.

Since L(γ) = |2i− 2| = 2
√

2, then by ML inequality,∣∣∣ ∫
γ

1

(z − 1)3
dz
∣∣∣ ≤ 2

√
2 · L(γ) = 8.

12. Let z = x+ iy ∈ γ, then |ez̄| = ex ≤ e2 because 0 ≤ x ≤ 2. Therefore,∣∣∣ ∫
γ

ez̄dz
∣∣∣ ≤ L(γ) ·max

z∈γ
|ez̄| = 8e2.

13. One primitive is zi+1

i+1
because by chain rule, on C\(−∞, 0],

dzi+1

dz
=
de(i+1)Logz

dz
=
i+ 1

z
· e(i+1)Logz = (i+ 1)zi.

The curve γ lies in the domain C\(−∞, 0] and it travels from −i to i.
Then,∫

γ

pv zidz =
ii+1

i+ 1
− (−i)i+1

i+ 1
=

1

1 + i
(ieiLogi − (−i)eiLog(−i))

=
1− i

2
(ie−π/2 + ieπ/2) = (1 + i) cosh(π/2).
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14. Both integrands are entire functions. As such, the integrals are inde-
pendent of the choice of the contour.

(a) The integrand has primitive iz + z3/3. Then,∫ i

0

z2 + idz = iz + z3/3|i0 = −1− i/3.

(b) The integrand has primitive i cosh z. Then,∫ π

−π
sin(iz) = i cosh z|π−π = 0.

15. The integrand can be rewritten as 2
5

(
1

z−3/2
− 1

z+1

)
. Since −1 is outside

of the pentagon γ but 3/2 is enclosed by γ, we apply Cauchy-Goursat
so that the integral is reduced to

2

5

∫
γ

1

z − 3/2
dz.

By deformation theorem, we can replace γ with any small circle cen-
tered at 3/2. The integral is then reduced to 4πi/5.
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Solutions 3

1. By partial fractions, the integral can be rewritten as

i

12

∮
γ

dz

z + 1.5i
− i

12

∮
γ

dz

z − 1.5i
.

The singular points we need to keep our eye on are ±1.5i.

(a) The rectangle does not enclose ±1.5i. Both integrands are holo-
morphic along and inside γ. By Cauchy-Goursat, the integral is
0.

(b) The circle only encloses 1.5i, but not −1.5i. The first integral is 0
by Cauchy-Goursat. The second becomes − i

12
· 2πi = π

6
. In total,

the integral is πi.

(c) Check that γ is a negatively oriented circle centered at 0 of radius
π, enclosing both ±1.5i. Therefore, the integral evaluates to

i

12
· 2πi− i

12
· 2πi = 0.

2. The following functions g are holomorphic along and inside the domain
enclosed by C(0, 2).

(a) Apply Cauchy’s formula to g(z) = z+2
z−3

at the point z0 = 1. The
integral is ∮

C(0,2)

g(z)

z − 1
dz = 2πig(1) = −3πi.

(b) Apply Cauchy’s formula to g(z) = ee
z

at the point z0 = iπ/2. The
integral is ∮

C(0,2)

g(z)

z − i
dz = 2πig(i) = 2πiee

iπ/2

= 2πiei.

(c) Apply Cauchy’s differentiation formula to get the 3rd derivative of
g(z) = sinh(πz) at the point z0 = 0. The integral is∮

C(0,2)

g(z)

z4
dz =

2πi

3!

d3

dz3
(sinh(πz))

∣∣∣∣
z=0

=
π4i

3
.
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3. For any point z0 ∈ C, radius r > 0 and point w on the circle C(z0, r),
we can apply triangle inequality to get |w| ≤ |w − z0| + |z0| = r + |z0|
and consequently |f(w)| ≤ π(r + |z0|). By Cauchy’s inequality,

|f ′′(z0)| ≤ 2π(r + |z0|)
r2

.

Taking the limit as r →∞, the right hand side goes to 0. Since |f ′′(z0)|
is independent of r, f ′′(z0) = 0 for all z0. The primitive f ′ must be
some constant a and the primitive f of f ′ must be of the form az + b.
However, since |f(0)| ≤ π · 0 = 0, b must be 0.

4. Since f (6) is bounded and entire, it is a constant function of some value
a where |a| > 0. By taking primitive 6 times, f must be a polynomial
of degree 6 because it has a leading term a

6!
z6.

5. The inequality implies that f(z) 6= 0 for all z, so 1/f(z) is a well-
defined entire function. Since |1/f(z)| ≤ 1, it is bounded and therefore
constant. f is then constant too.

6. There is some constant M > 0 such that |f(z)| ≤M for all z ∈ C. By
ML inequality,∣∣∣ ∮

C(0,R)

f(z)

(z − z0)(z − z1)
dz
∣∣∣ ≤ 2πRmax

|z|=R

∣∣∣∣ f(z)

(z − z0)(z − z1)

∣∣∣∣
= 2πR

M

min|z|=R |(z − z0)(z − z1)|

≤ 2πMR

(R− |z0|)(R− |z1|)
.

where the final inequality comes from triangle inequality. By taking
the limit as R→∞, this upper bound clearly goes to 0, so then

lim
R→∞

∮
C(0,R)

f(z)

(z − z0)(z − z1)
dz = 0.

This integral can be separated by partial fractions and evaluated by
Cauchy’s integral formula.∮
C(0,R)

f(z)

(z − z0)(z − z1)
dz =

1

z0 − z1

[∮
C(0,R)

f(z)

z − z0

−
∮
C(0,R)

f(z)

z − z1

dz

]
=
f(z0)− f(z1)

2πi(z0 − z1)
.

This expression is independent of R, so then it must be 0. Therefore
f(z0) = f(z1).
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7. It is holomorphic with derivative 2z on D and 0 on the annulus {2 <
|z| < 3}. It attains maximum on the annulus with |f(z)| = 2. The set
U is disconnected and therefore the maximum modulus principle does
not apply.

8. As f is entire, by maximum modulus principle, it is sufficient to see the
behavior of f on the circle {|z| = 2} to find maximum points. When
z = 2eit where t ∈ R,

|z3 + i| = |8e3it + 1| = |(8 cos 3t+ 1) + i8 sin 3t|

=
[
64 cos2 3t+ 16 cos 3t+ 1 + 64 sin2 3t

]1/2
= [65 + 16 cos 3t]1/2

The real function cos 3t attains its maximum value 1 at t = 0,±2π
3

.
At any of these values, we have |z3 + 1| = 9, and this is attained by
z = 2,−1± i

√
3.

9. The function e(1+i)z is entire. By the maximum modulus principle, to
find the maximum value of e(1+i)z on the closed square {x + iy | 1 <
x, y < π}, it is sufficient to look at the the function along the boundary
of the square. Let z = x+ iy.

|e(1+i)z| = |e(x−y)+i(x+y)| = ex−y.

The maximum of x−y is attained on the boundary of the square when
x = π and y = 1. Therefore, the smallest radius is r = eπ−1.

10. Part (a) follows from applying the minimum modulus principle on
D(z0, ε). If the lemma weren’t true, it would in the most direct way con-
tradict the minimum modulus principle. Part (b) follows from triangle
inequality:

|f(z)| ≥ |adzd| −
d−1∑
n=0

|anzn| ≥ |ad||z|d −
d−1∑
n=0

|an||z|d−1

≥ |z|d−1

(
|ad||z| −

d−1∑
n=0

|an|

)
≥ |z|d−1 ≥ Rd−1.

For part (c), |f | must attain minimum on the compact disk D(0, R)
where R is from part (b). Let z0 be a minimum point in this compact
disk. If f(z0) 6= 0, then it will contradict part (a). Therefore, f(z0) = 0.
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Solutions 4

1. (a) e2πz = e4π2
e2π(z−2π) = e4π2∑∞

n=0
(2π)n

n!
(z − 2π)n,

(b) 1
1+z2

=
∑∞

n=0(−z2)n,

(c) sin z = cos(z − π
2
) = 1 +

∑∞
n=0

(−1)n

(2n)!
(z − π

2
)2n.

2. Apply the identity theorem on any sequence of distinct points in V
converging to some point in V . Such a sequence always exists because
V is non-empty and open.

3. Apply the identity theorem on f(z̄) and f(z) as both functions agree
on R.

4. Yes. Let z = reiθ where r > 1. As N → ∞, z−N−1 → 0 because
|z−N−1| = r−N−1 → 0. Therefore,

g(z) = lim
N→∞

N∑
n=0

z−n = lim
N→∞

1− z−N−1

1− z−1
=

1

1− z−1
=

z

z − 1
.

5. (a) About i,

z

z2 + 1
= (z − i)−1 z

z + i
= (z − i)−1

(
1− i

z + i

)
= (z − i)−1

(
1− 1

2
(
1− i

2
(z − i)

))

= (z − i)−1

(
1−

∞∑
n=0

in

2n+1
(z − i)n

)

=
1

2
(z − i)−1 −

∞∑
n=0

in+1

2n+2
(z − i)n.

This Laurent series is convergent on {0 < |z − i| < 2}.
(b) About 0,

2

z − 2
+

1

4− z
=

2

z
(
1− 2

z

) +
1

4
(
1− z

4

)
=

2

z

∞∑
n=0

2nz−n +
1

4

∞∑
n=0

zn

4n

=
−1∑

n=−∞

2−nzn +
∞∑
n=0

4−n−1zn.
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This Laurent series is convergent on {2 < |z| < 4}.
(c) About 1,

3− 3z

2z2 − 5z + 2
=

(
1

1− 2z
+

1

2− z

)
= − 1

2(z − 1)
(

1 + 1
2(z−1)

) +
1

1− (z − 1)

= − 1

2(z − 1)

∞∑
n=0

(
− 1

2(z − 1)

)n
+
∞∑
n=0

(z − 1)n.

=
−1∑

n=−∞

(−2)−n(z − 1)n +
∞∑
n=0

(z − 1)n.

This Laurent series is convergent on {1
2
< |z − 1| < 1}.

6. (a) The zeros of sin z are on πn for n ∈ Z, and none of these are zeros
of cos z. Each of them is simple, so then cot z has simple poles at
πn for n ∈ Z.

(b) Singularities are at point z such that sin z = sin 2z. This occurs
when sin z = 0, i.e. z = nπ for n ∈ Z, or when cos z = 1

2
, i.e.

z = ±π
3

+ 2πn for n ∈ Z. Each of these are single poles of the
function.

(c) The zeros of the denominator are clearly 0 of order 2 and ±1 of
order 1. The numerator does not have a zero at 0, but it has
zeros at ±1. Therefore, 0 is a double pole and ±1 are removable
singularities.

7. The singularities of f/g are removable because |f(z)/g(z)| ≤ 1, i.e.
bounded. As such, f/g is a bounded entire function, which is a constant
function a for some a ∈ C.

8. (a) Since f has a zero of order n ≥ 1, g(z) is a well-defined holomor-
phic function with removable singularity at 0.

(b) Along |z| = r for any r < 1,

|g(z)| =
∣∣∣∣f(z)

z

∣∣∣∣ < 1

r
.

As r → 1, the upper bound converges to 1. Thus, the maximum
modulus of g along the boundary is 1 and by MMP, |g(z)| ≥ 1.
This implies that |f(z)| ≤ |z|. Looking at the Taylor series of f
should convince you that |f ′(0)| = |g(0)| ≤ 1.
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(c) If |f ′(0) = 1 or |f(w)| = |w| for some point w ∈ D∗, then |g(w′)| =
1 where w′ is either 0 or w. As g attains maximum in D, it must
be a constant function a and therefore f(z) = az. Since either
|f ′(0) = 1 or |f(w)| = |w|, then |a| = 1. This implies that a is of
the form eiθ and clearly f(z) = eiθz is a counterclockwise rotation
of the unit disk of angle θ.

9. It’s easier to look at the image of the four line segments individually.
Assume that the orientation of γ is positive. Using Cartesian coordi-
nates z = x+ iy, cos 2z − 1 = (cos 2x cosh 2y − 1)− i sin 2x sinh 2y.

• When x = ±π
4
, cos 2z − 1 = −1∓ i sinh 2y.

The image of the x = −pi
4

side of the square is the same as that of

the x = −pi
4

side, which is a upward linear curve from −1−i sinh π
2

to −1 + i sinh π
2
.

• When y = ±π
4
, cos 2z − 1 = cos 2x cosh π

2
− 1∓ i sin 2x sinh π

2
.

The image of the y = −pi
4

side of the square is the same as that of

the y = −pi
4

side, which is a downward elliptic arc with co-vertices
−1± i sinh π

2
and rightmost vertex −1 + cosh π

2
.

The curve γ has a winding number two about the origin. Since cos 2z−1
has no poles, it must have exactly two zeros enclosed by γ. (It is in
fact a double zero at 0.)

10. When |z| = 1, |ez−1| = ex−1 ≤ 1 < 2 = |2zn|. By Rouche’s theorem,
ez−1 + 2zn has the same number of zeros as 2zn, which is n, inside D.

11. When |z| = 2, |5z + 1| ≤ 5|z| + 1 = 11 < 32 = |z5|. By Rouche’s
theorem, z5 + 5z+ 1 has the same number of zeros as z5, which is 5, in
D(0, 2). When |z| = 1, |z5| = 1 < 4 = |5z| − 1 ≤ |5z + 1|. Therefore,
z5 + 5z + 1 has the same number of zeros as 5z + 1, which is 1, in D.
In total, z5 + 5z + 1 has 4 zeros inside {1 ≤ |z| < 2}.
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Solutions 5

1. (a) The function f(z) = cot z has a pole of order 1 at 0. Then,

Resf(0) =
1

0!
lim
z→0

z cot z = lim
z→0

cos z
z

sin z
= 1.

(b) cos z + 1 has a double zero at π since its first derivative − sin z
vanishes at π but the second derivative − cos z does not. The
function f(z) = z+π

cos z+1
at has a pole of order 2 at π. Then, using

the change of variables w = z − π,

Resf(π) =
1

1!
lim
z→π

d

dz

(z − π)2

cos z + 1
= lim

z→π

d

dz

(z − π)2

cos z + 1

= lim
z→π

2(z − π)(cos z + 1) + sin z(z − π)2

(cos z + 1)2

= lim
w→0

2w(1− cosw)− w2 sinw

(1− cosw)2

= lim
w→0

2w(w
2

2
− w4

24
+ . . .)− w2(w − w3

6
+ . . .)

(w
2

2
− w4

24
+ . . .)2

= lim
w→0

w5

12
+ . . .

w4

4
− . . .

= 0.

2. (a) The function f(z) = 3z+1
(z+2)(z−1)

has single poles at 1 and −2. γ has
winding number −1 about 1 and 0 about −2. Thus,∮

γ

f(z)dz = −1 · 2πiResf(1) = −2πi lim
z→1

3z + 1

z + 2
= −8πi

3
.

(b) The function f(z) = e1/z has an essential singularity at 0 and at
that point, the residue is 1 since e1/z = 1 + z−1 + z−2

2
+ . . .. Since

γ has winding number 1 about the origin,∮
γ

f(z)dz = 2πi.

(c) The function f(z) = csc(πz) has single poles at every integer. γ
has winding numbers 2, 1 and −1 about −1, 0 and 1 respectively.

14



Therefore,∮
γ

f(z)dz = 4πiResf(−1) + 2πiResf(0)− 2πiResf(1)

= 4πi lim
z→−1

z + 1

sin 2πz
+ 2πi lim

z→0

z

sin 2πz
− 2πi lim

z→1

z − 1

sin 2πz

= 4 + 2− 1 = 3.

3. By the change of variables z = eiθ, the integral can be transformed into
a contour integral along the unit circle γ(θ) = eiθ where 0 ≤ θ ≤ 2π.∫ 2π

0

dθ

1− 2a cos θ + a2
=

∮
γ

i

(az − 1)(z − a)
dz.

The only pole of the integrand enclosed by γ is a and it is a single pole.
By residue theorem,∫ 2π

0

dθ

1− 2a cos θ + a2
= 2πi lim

z→a

i

(az − 1)
=

2π

1− a2
.

4. (a) The integrand f(z) is an even function and it has simple poles at
±i and ±2i. Use semicircular closed contour γ of radius R > 2.
The poles enclosed by γ are i and 2i. By residue theorem,∮

γ

f(z)dz = 2πi (Resf(i) + Resf(2i)) = . . . =
π

3
.

By ML inequality that the semicircle part γ2 of γ vanishes to 0 as
R→∞ because∣∣∣ ∫

γ2

f(z)dz
∣∣∣ ≤ πR·max

z∈γ2

∣∣∣ z2

(z2 + 1)(z2 + 4)

∣∣∣ ≤ πR3

(R2 − 1)(R2 − 4)
→ 0.

This leaves π/3 as the value of the integral of f on (−∞,∞).
Therefore, ∫ ∞

0

x2

(x2 + 1)(x2 + 4)
dx =

π

6
.

(b) The integrand

f(z) =
zeiz

(z2 + 1)(z2 + 4)

15



has simple poles at ±i and ±2i. Use semicircular closed contour γ
of radius R > 2. The poles enclosed by γ are i and 2i. By residue
theorem,∮

γ

f(z)dz = 2πi (Resf(i) + Resf(2i)) = . . . =
πi

3
(e−1 − e−2).

By Jordan’s lemma, the semicircle part γ2 of γ vanishes to 0 as
R→∞ because∣∣∣ ∫

γ2

f(z)dz
∣∣∣ ≤ π·max

z∈γ2

∣∣∣ z

(z2 + 1)(z2 + 4)

∣∣∣ ≤ πR

(R2 − 1)(R2 − 4)
→ 0.

Therefore, the integral of f on (−∞,∞) is equal to that along γ.
By taking the imaginary part,∫ ∞

0

z sin z

(z2 + 1)(z2 + 4)
dx =

π

3
(e−1 − e−2).

(c) Substitute y = x − π so that sinx = − sin y. From the example
in class, this integral is −π.

(d) You can use the semicircular contour, but I’ll use the sector con-
tour γ with angle π/2 instead. Let f(z) be the integrand; γ will
enclose the single pole of f at eiπ/4. Let’s use the same notation
as in the notes.

I0 = 2πiResf(eiπ/4) = . . . =
π

2
√

2
(1− i).

Use the parametrisation γ3(r) = ri as r varies from R to 0 and
obtain that

I3 =

∫ 0

R

1

(ri)4 + 1
idr = −i

∫ R

0

1

R4 + 1
dr = −iI1.

Also, I2 → 0 as R→∞ because by ML inequality∣∣∣ ∫
γ2

f(z)dz
∣∣∣ ≤ πR

2
max
z∈γ2

1

|z4 + 1|
≤ πR

2(R4 − 1)
→ 0.

Then, taking the limit R→∞ and after rearranging, you should
obtain ∫ ∞

0

1

1 + x4
dx =

π

2
√

2
.
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(e) The function f(z) = 1
z1/2(z2+9)

has simple poles at ±3i. Pick the

branch cut to be arg z = 0. Use the keyhole contour to evaluate
the given integral I. Using the same notation as in the notes,

I0 = 2πi[Resf(3i) + Resf(3i)] = . . . =
π

3

√
2

3
.

Taking R→∞ and ε, δ → 0, check that I1 → I and that

I3 =

∫
γ3

1

z1/2(z2 + 9)
dz =

∫ ρ

R

1√
rei(π−ε/2)(r2ei(4π−2ε) + 9)

ei(2π−ε)dr

→ −
∫ ∞

0

1

eiπ
√
r(r2 + 9)

dz = −e−πiI = I.

Check that by ML inequality, we have I2, I4 → 0. Therefore, this
gives 2I = I0 and upon simplifying, I = π

3
√

6
.

(f) Let f(z) be the integrand. It has a triple pole at −1. Pick the
branch cut to be arg z = 0. Use the keyhole contour to evaluate
the given integral I. Using the same notation as in the notes,

I0 = 2πiResf(−1) = . . . = −2πi

9z2
p.v.z1/3

∣∣∣
z=−1

=
π

9
(
√

3− i).

Taking R→∞ and ε, δ → 0, check that I1 → I and I2 → 1−i
√

3
2

I.
The latter is because

I3 =

∫
γ3

3
√
z

(z + 1)3
dz =

∫ ρ

R

3
√
rei(2π/3−ε/2)

(re−iε + 1)3
ei(2π−ε)dr

→ −e2πi/3

∫ ∞
0

3
√
r

(r + 1)3
dr = −e2πi/3I.

Check that by ML inequality, we have I2, I4 → 0. Therefore, this
gives 3−i

√
3

2
I = I0 and upon simplifying, I = 2π

9
√

3
.

5. This is the trickiest question in the problem set. The usual branch cut
for log is [−∞, 0] and z2 + 1 ∈ [−∞, 0] precisely when z2 ∈ [−∞,−1]
and therefore the branch cut is {ai | a ≥ 1, a ≤ −1}, a union of two
vertical rays. To evaluate the integral I asked, it is easier to split the
integrand into f + g where

f(z) =
Log(z + i)

z2 + 1
, g(z) =

Log(z − i)
z2 + 1

.
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The branch cut of f can be taken to be {ai |a ≤= 1} and that of g can
be taken to be {ai | a ≥ 1}.
The integral of f along (−∞,∞) can be evaluated using the usual
semicircular contour γ = γ1 ∪ γ2 where γ1 = [−R,R] and γ2 is an
upper semicircle of radius R > 0. With the usual argument, you may
check that by ML inequality, the integral of f along γ2 vanishes to 0 as
R→∞. Therefore,∫ ∞

−∞

Log(x+ i)

x2 + 1
dx = lim

R→∞

∫
γ1

Log(z + i)

z2 + 1
dz

= lim
R→∞

∮
γ

Log(z + i)

z2 + 1
dz

= 2πiResf(i) = . . . = π ln 2 +
π2i

2
.

To avoid the branch cut of g, we evaluate the integral of g using the
lower semicircular contour σ = σ1 ∪σ2 where σ1 is the segment from R
to −R and σ2 = {Reiθ | − π ≤ θ ≤ 0} is the lower semicircle of radius
R > 0. With the usual argument, you may check that by ML inequality,
the integral of g along σ2 vanishes to 0 as R→∞. Therefore,∫ ∞

−∞

Log(x− i)
x2 + 1

dx = − lim
R→∞

∫
σ1

Log(z − i)
z2 + 1

dz

= − lim
R→∞

∮
σ

Log(z − i)
z2 + 1

dz

= −2πiResg(−i) = . . . = π ln 2− π2i

2
.

Summing the two integrals together, we obtain∫ ∞
−∞

Log(x− i)
x2 + 1

dx = 2π ln 2.

Since the integrand is an even function, we can divide by two and obtain
that the integral we wanted to find all along is indeed π ln 2.

6. You can check that Uz = 1
2
Ux + i

(
−1

2
Uy
)

satisfies Cauchy-Riemann
equations. Alternatively, you may check that the Laplacian can be
expressed using Wirtinger derivatives:

∆ =
∂2

∂x2
+

∂2

∂y2
= 4

∂

∂z̄

∂

∂z̄
.

This implies that ∂
∂z̄
Uz = 1

4
∆U = 0, i.e. Uz is holomorphic.
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7. This is another calculus exercise. Compute the Laplacian accordingly
and show that it vanishes to 0. At (0, 0), the function is not even
continuous, since

lim
x→0

0

x2 + 02
= 0 6=∞ = lim

y→0

y

02 + y2
.

8. Let u(x, y) be a bounded harmonic function on R2. Pick any harmonic
conjugate v of u. Then, f = u+ iv is an entire function and so is ef(z).
Since u is bounded, so is |ef(z)| = eu(x,y). By Liouville, ef(z), f(z) and
ultimately u are constant.

9. The difference u = u1−u2 is harmonic on U and vanishes on the whole
subset V . Since uz is holomorphic on U and vanishes on the whole
V , then uz ≡ 0 on U by the identity theorem. Since 2uz = ux − iuy,
then ux ≡ uy ≡ 0, i.e. u is a constant function, so it must be the zero
function.

10. Let f = u+iv where u and v are real-valued functions, then g = u2+v2.
Using harmonicity of u and v,

∆g =
∂

∂x
(2uux + 2vvx) +

∂

∂y
(2uuy + 2vvy)

= 2uuxx + 2u2
x + 2vvxx + 2v2

x + 2uuyy + 2u2
y + 2vvyy + 2v2

y

= 2u(uxx + uyy) + 2v(vxx + vyy) + 2(u2
x + u2

y + v2
x + v2

y)

= 2(u2
x + u2

y + v2
x + v2

y).

Since g is harmonic, the expression above is 0 and therefore, ux ≡ uy ≡
vx ≡ vy ≡ 0 on U . This shows that f is constant.

11. (a) r
w−r = r

w
1

1− r
w

= r
w

∑
n≥0

(
r
w

)
=
∑

n≥1 r
nw−n.

(b) Let w = z = eiθ. Then,

r

w − r
=

r

eiθ − r
=
r(e−iθ − r)
|eiθ − r|2

=
r(cos θ − r)− ir sin θ

1− 2r cos θ + r2

and by de Moivre’s theorem,∑
n≥1

rnw−n =
∑
n≥1

rn (cos(nθ)− i sin(nθ))

=

(∑
n≥1

rn cos(nθ)

)
− i

(∑
n≥1

rn sin(nθ)

)
.
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Comparing the real and imaginary parts should give the equations
we wanted.

(c) By now, this is just some basic algebraic manipulation inferior to
everything else you’ve done.

12. (a) This example is similar to the one done in class.

u(r, θ) =
1

2π

∫ π/2

0

P (r, t− θ)dt = 2 tan−1

(
1 + r

1− r
tan

t− θ
2

)∣∣∣∣π/2
0

=
1

π
tan−1

(
1 + r

1− r
tan

π − 2θ

4

)
+

1

π
tan−1

(
1 + r

1− r
tan

θ

2

)
.

(b) Use the cosine series on Qn 11 to integrate.

u(r, θ) =
1

2π

∫ 2π

0

P (r, t− θ) cos t dt

=
1

2π

∫ 2π

0

(
1 +

∑
n≥1

2rn cos(n(t− θ))

)
cos t dt

=
1

2π

∫ 2π

0

cos t dt+
1

π

∑
n≥1

rn
∫ 2π

0

cos(n(t− θ)) cos t dt

=
1

2π

∑
n≥1

rn
∫ 2π

0

cos(n(t− θ) + t) + cos(n(t− θ)− t) dt

= r cos θ.

(Yes... the corresponding holomorphic function f such that Ref =
u is just the identity function f(z) = z.)
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