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Abstract

Holomorphic dynamics is the study of the behaviour of iterations of holomorphic

endomorphisms of a Riemann surface. Quadratic maps are an epitome of how even the

simplest non-linear system can admit a highly complicated dynamical behaviour.

In the study of the dynamics of quadratic maps, quadratic-like renormalisation is the

process of restricting a quadratic discrete dynamical system to a smaller scale to obtain

a new dynamical system behaving in a topologically similar way to quadratic maps.

In this project, we aim to study in depth the concepts of renormalisation and explore

its significance in tackling two distinct problems in holomorphic dynamics, namely the

problem of local connectivity of Julia sets and the Mandelbrot set as well as the problem

of existence of a fixed point of renormalisation.
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Chapter 1

Introduction

1.1 Brief History

Complex dynamics is the study of the behaviour of iterations of a holomorphic map

f : X → X defined on a Riemann surface X. The domain X is split into the stable

subset, characterised by equicontinuity of iterations of f , and the chaotic subset, where

the iterates exhibit sensitive dependence on initial conditions.

The modern framework of holomorphic dynamics was formulated in the 1920s by

Pierre Fatou and Gaston Julia as a highly successful application of Montel’s theory of

normal families of holomorphic functions. However, a surge of theoretical developments

only appeared in the 1970s due to its connections to other fields, such as the study of

hyperbolic 3-manifolds and Kleinian groups.

Inevitably, the dynamical object that receives the most attention is the Mandelbrot

set M. The bifurcation locus of the family {fc(z) = z2 +c |c ∈ C} forms the boundary of

M. Theoretically, its attractiveness lies in its universality — a copy of M can be found

in other families of holomorphic maps which are seemingly unrelated to the quadratics.

Much of the current research is also motivated by the following conjecture by Douady

and Hubbard ([DH84]).

Conjecture (MLC). The Mandelbrot set M is locally connected.

If true, the MLC gives us a complete topological description of all quadratic maps and

implies another central conjecture, namely the density of hyperbolicity for the quadratic

family. While we are now aware of many topological properties of M (compactness,

connectedness, etc), proving local connectivity has been extremely difficult. So far,

many cases have been settled through the theory of renormalisation.

Renormalisation can be thought as the process of restricting a dynamical system

to a smaller scale and obtaining a new dynamical system of the same type. In the

1980s, Douady and Hubbard ([DH85]) developed the quadratic-like renormalisation

which concerns dynamical systems behaving in a topologically similar way to quadratic

maps. Yoccoz ([Hub93]) then pioneered an innovative approach to prove the MLC at
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parameter values c which are at most finitely renormalisable. It took about 15 years

for Yoccoz’s result to be generalised to unicritical polynomials of arbitrary degree d ≥ 2

(see [AKLS09], [KL09a]).

The theory of renormalisation of quadratic maps, however, was initiated by physicists

Coullet, Tresser, and Feigenbaum in the 1970s ([CT78] and [Fei78]). Their work

numerically explained the universality in period-doubling cascades inspired by Robert

May’s quadratic model for population dynamics ([May76]). Specifically, consider

the real quadratic family {fc}c∈[−2,1/4] and the parameters {cn}n∈N at which period-

doubling bifurcation occurs, labelled in decreasing order. They discovered that cn

converges to cF ≈ −1.4011552, known as the Feigenbaum parameter, and that the

ratio (cn − cn−1)/(cn+1 − cn) converges to δ ≈ 4.669201, known as the Feigenbaum

constant. Astoundingly, δ appears in other generic families of unimodal maps.

Figure 1.1: Bifurcation diagram for {fc}c∈R showing the transition from stable
dynamics on the right to chaotic dynamics on the left through period-doubling

cascade. The limit of the cascade shown in black is a Cantor set.

The three physicists left behind some conjectures, one of which says that the

renormalisation operator R : f 7→ af2(a−1z) for some normalising constant a has

a unique fixed point. The conjectures motivated much of the remarkable progress

made by Sullivan, McMullen and Lyubich on the renormalisation theory for infinitely

renormalisable quadratic maps satisfying a certain precompactness property called a

priori bounds ([Sul88], [McM96], and [Lyu97]).

Since then, significant progress has been made in [Lev11] and [CS15] in the case

of infinitely renormalisable quadratic maps without a priori bounds. Cheraghi and

Shishikura, in particular, applied another type of renormalisation called near-parabolic

renormalisation invented by Inou and Shishikura in [IS06].

4



1.2 Summary of Contents

The main goal of the project is to study the theory of renormalisation within the

framework of the dynamics of quadratic-like maps, i.e. those which behave topologically

like quadratic maps. Other types of renormalisation, such as parabolic and near-

parabolic renormalisations in holomorphic dynamics, renormalisation in billiard maps, as

well as renormalisation groups in quantum field theory, bear similarity in ideas but these

will not be covered here. The author recognises that the topic is very broad, and only

intends to capture fundamental parts of quadratic-like renormalisation and how they

contribute to the progress on local connectivity and the renormalisation conjectures.

All illustrations presented here were originally produced using MATLAB.

Chapter 2 begins by reviewing many essential tools from complex analysis. This

includes the theory of quasiconformal maps - undoubtedly one of the most important

modern tools in complex dynamics. The second half will emphasise on applying

quasiconformal techniques to the geometry of annular domains.

In chapter 3, we will review preliminary concepts in holomorphic dynamics. We

emphasise on the dynamics of quadratic maps as well as the properties of the Mandelbrot

set M. We conclude with external rays on the dynamical space.

In chapter 4, we begin studying from [DH85] and [McM94a] the objects of high

interest: polynomial-like maps and renormalisations of quadratic-like maps. We first

prove Douady and Hubbard’s straightening theorem, a result which is central to

almost every renormalisation argument. We then discuss the dynamical properties of

renormalisable maps and the existence of copies of the Mandelbrot set in itself.

We introduce in chapter 5 a way to construct renormalisations of quadratic maps.

This is done through puzzles, a powerful combinatorial tool introduced by Yoccoz to

prove local connectivity of Julia sets of at most finitely renormalisable quadratic maps

having no irrationally indifferent periodic cycles, and the MLC at at most finitely

renormalisable parameters.

Chapter 6 focuses on the classical problem of the existence of a renormalisation fixed

point. To study infinitely renormalisable maps, we define a priori bounds and discuss its

importance. We then present two known results with our own proofs in Theorems 6.7

and 6.11. In short, we prove that if an infinitely renormalisable quadratic map f has a

priori bounds, we have the following:

1. The postcritical set P (f), i.e. the closure of the forward orbit of the critical value,

is a Cantor set.

2. The map f has an infinite sequence of distinct repelling periodic cycles with

multiplier uniformly bounded by a constant.

Lastly, we will discuss the existence of a renormalisation fixed point, i.e. a solution of

the Cvitanovic-Feigenbaum equation

fp(z) = af(a−1z)

for some normalising constant a ∈ C∗ and integer p ≥ 2.
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1.3 Notation and Terminology

The Riemann sphere Ĉ = C ∪ {∞} is the usual one point compactification of the

complex plane C. Below is a list of common subsets of Ĉ:

H = {z ∈ C | Imz > 0}, Dr(w) = {z ∈ C | |z − w| < r},

D = {z ∈ C | |z| < 1}, Dr = {z ∈ C | |z| < r},

T = {z ∈ C | |z| = 1}, Tr = {z ∈ C | |z| = r},

Aa,b = {z ∈ C | a < |z| < b}.

We denote by A the closure of A, int(A) the interior of A, and ∂A the boundary of

A respectively. A non-empty subset A of the complex plane C is:

• compactly contained in B, i.e. A b B, if A ⊂ int(B),

• a topological disk if A is open, simply connected, and A 6= C,

• a topological annulus if A is open and doubly connected,

• a Jordan curve if A is a simple closed curve,

• a Jordan domain if A is a topological disk and ∂A is a Jordan curve,

• full if A is compact in C and C\A is connected,

• a hull if A is full non-degenerate connected set,

• a Cantor set if A is metrisable and as a metric space, A is a compact, perfect, and

totally disconnected.

Let U and V be open sets in C and f : U → V be a smooth function. The complex

partial derivatives of f at a point z = x+ iy are

f ′ = fz =
∂f

∂z
:=

1

2

(∂f
∂x
− i∂f

∂y

)
, fz =

∂f

∂z
:=

1

2

(∂f
∂x

+ i
∂f

∂y

)
The smooth function f : U → V is:

• holomorphic if fz ≡ 0,

• conformal if f is holomorphic and f ′(z) 6= 0 for all z ∈ U ,

• univalent if f is holomorphic and injective,

• a biholomorphism if f is holomorphic, bijective, and has a holomorphic inverse.

A point z ∈ U is a critical point of a holomorphic function f : U → V if f ′(z) = 0.

If so, f(z) is called a critical value of f . The holomorphic function f is:

• proper if any compact subset K ⊂ V has a compact preimage f−1(K) ⊂ U ,

• a covering map of degree d > 1 if f is a surjective open holomorphic local

homeomorphism and each fibre f−1(z) has cardinality d,

• a branched covering map of degree d > 1 if f : U\S → V \f(S) is a covering map

of degree d where S is the set of critical points of f .

Unless otherwise stated, we will always assume that a space of functions between

two open sets U, V ⊂ Ĉ is endowed with the compact-open topology, i.e. fn → f if and

only if fn converges uniformly to f on any compact subsets of U .
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Chapter 2

Complex Analysis

This chapter reviews basic results in complex analysis on conformal and quasicon-

formal maps. Later parts will put emphasis on the quasiconformal geometry of annuli.

2.1 Conformal Maps

Definition 2.1. A Riemann surface is defined as a one-dimensional complex manifold.

A map f : X → Y between two Riemann surfaces is holomorphic if f is holomorphic

in the corresponding coordinate charts. Two Riemann surfaces are biholomorphic

when there is a biholomorphism (bijective holomorphic map with holomorphic inverse)

between them.

Theorem 2.1 (Riemann Mapping Theorem). Any topological disk X ⊂ C is biholo-

morphic to the unit disk D.

The Riemann mapping theorem is a special case of the uniformisation theorem.

Theorem 2.2 (Uniformisation Theorem). Any simply connected Riemann surface X is

biholomorphic to either the Riemann sphere Ĉ, the complex plane C, or the unit disk D.

Definition 2.2. We say that a Riemann surface X is hyperbolic if its universal cover is

biholomorphic to D.

The Poincaré metric ρD(z) := 4
1−|z|2 induces a hyperbolic distance on D defined as

dD(z, w) := inf{LρD(γ) | γ is a curve joining z and w},

where LρD(γ) :=
∫
γ ρD|dz| is the ρD-length of γ. Any hyperbolic Riemann surface X can

be endowed with a hyperbolic distance dX induced by the distance dD on its universal

cover.
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Lemma 2.3 (Schwarz-Pick). Let f : X → Y be a holomorphic map between two

hyperbolic Riemann surfaces endowed with their respective hyperbolic distances dX and

dY . If f is a covering map, then it is a local isometry. Else, f is local uniform

contraction, i.e. for any compact K ⊂ X, there is a contraction factor rK ∈ (0, 1)

such that dY (f(z), f(w)) ≤ rKdX(z, w) for all z, w ∈ K.

Definition 2.3. A family F of holomorphic maps from a Riemann surface X to another

surface Y is normal if F is precompact in the compact-open topology. In other words,

every sequence {fn}n∈N in F admits a subsequence which converges uniformly on

compact subsets.

Theorem 2.4 (Montel). A family F of holomorphic maps between hyperbolic Riemann

surfaces X and Y is a normal family.

Definition 2.4. A map f : D → C is a Schlicht map if it is univalent, f(0) = 0, and

f ′(0) = 1.

Theorem 2.5 (Koebe Distortion). Let f : D → C be a Schlicht map. Then, for any

|z| ∈ D, if r = |z|,
r

(1 + r)2
≤ |f(z)| ≤ r

(1− r)2
,

1− r
(1 + r)3

≤ |f ′(z)| ≤ 1 + r

(1− r)3
.

Corollary 2.6. The family of Schlicht maps is precompact.

Proof. The first inequality in the previous theorem provides uniform boundedness on

compact subsets, hence, by Montel’s Theorem 2.4, the family is normal.

2.2 Quasiconformal Maps

Holomorphic maps are often too restrictive for our analysis. A generalisation of

conformal maps is those which distort angles locally in a controlled manner. Such

maps are called quasiconformal maps. This section aims to review the properties of

quasiconformal maps as well as their relationship with quasisymmetric maps. Many

results stated without proof can be found in [Ahl06] and [LV73].

Definition 2.5. A K-quasiconformal map f : U → V between two open subsets of CC

is an orientation preserving homeomorphism such that:

1. f is absolutely continuous on lines in U ,

2. the complex dilatation µf (z) := fz(z)
fz(z) satisfies ‖µf‖∞ < K−1

K+1 .

We say that f is a K-quasiregular map if it is the composition of a non-constant

holomorphic map and a K-quasiconformal map.

8



Theorem 2.7. Suppose f : U → V is a K-quasiconformal map.

(A) If K = 1, then f is conformal.

(B) The inverse f−1 : V → U is also K-quasiconformal.

(C) If g : V → W is a L-quasiconformal map, then the composition g ◦ f : U → W is

KL-quasiconformal.

Remark. Item (A) is popularly known as Weyl’s lemma. Items (A) and (C) of the

proposition can be generalised to quasiregular maps.

Theorem 2.8. For any K ≥ 1, the space of K-quasiconformal maps f : Ĉ → Ĉ fixing

0, 1 and ∞ is compact.

Definition 2.6. A Beltrami coefficient on an open subset U ⊂ Ĉ is a measurable

µ ∈ L∞(U) where ‖µ‖∞ < 1.

Every quasiconformal map f : U → V has an associated Beltrami coefficient, which

is its complex dilatation µf . The following theorem by Ahlfors and Bers gives us the

converse.

Theorem 2.9 (Measurable Riemann Mapping Theorem (MRMT)). For any Beltrami

coefficient µ on Ĉ, there is a quasiconformal map f : Ĉ → Ĉ with complex dilatation

µf = µ. Moreover, f is unique up to post-composition of biholomorphisms of Ĉ (in

particular if we require f to fix 0, 1 and ∞).

Remark. MRMT also applies to Beltrami coefficients on open domains in Ĉ. However,

the uniqueness criterion may vary depending on the domain.

Definition 2.7. Let f : U → V be a quasiconformal holomorphic map between open

subsets of Ĉ, µ be a Beltrami coefficient on V and φ be the unique quasiconformal map

with µφ = µ fixing 0, 1, and ∞. The pullback of µ via f is defined as f∗µ := µφ◦f , a

Beltrami coefficient on U associated to φ ◦ f .

We now turn to a more geometric characterisation of quasiconformal maps using the

concept of extremal lengths. Consider a set of paths Γ (curves or arcs) in an open and

connected domain U ⊂ C. We wish to construct a conformal invariant measure of the

size of Γ.

Definition 2.8. A measurable function ρ : U → [0,∞) is allowable for U ⊂ C if the

ρ-area of U , Aρ(U) =
∫∫
U ρ

2dxdy, is non-zero and finite. The set of allowable functions

on U is denoted by A(U).

Let Γ be some family of rectifiable curves in U . For ρ ∈ A(U), define the ρ-length

of Γ to be Lρ(Γ) = infγ∈Γ Lρ(γ), where Lρ(γ) =
∫
γ ρ|dz| denotes the ρ-length of γ. Set
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Lρ(Γ) =∞ if Γ is empty. The extremal length of Γ is defined as

λ(Γ) = sup
ρ∈A(U)

Lρ(Γ)2

Aρ(U)
.

Remark. The extremal length can be seen as an average minimal length for a curve

family. Notice that the fractional expression is invariant under rescaling of ρ. Sometimes

it is convenient to normalise ρ such that Lρ(Γ) = Aρ(U).

Theorem 2.10. An orientation preserving homeomorphism f : U → V is K-

quasiconformal if and only if any family of curves Γ in U satisfies

1

K
λ(f(Γ)) ≤ λ(Γ) ≤ Kλ(f(Γ)).

Corollary 2.11. Extremal length is a conformal invariant.

Definition 2.9. A homeomorphism f : (X, dX) → (Y, dY ) between two metric spaces

is S-quasisymmetric if there is S > 0 such that for all x, y, z ∈ X,

dY (f(x), f(y))

dY (f(x), f(z))
≤ SdX(x, y)

dX(x, z)
.

Example 2.1. Quasisymmetric homeomorphisms are a generalisation of bi-Lipschitz

maps. Indeed, any L-bi-Lipschitz map is a L2-quasisymmetric homeomorphism.

The following theorem asserts the relation between quasisymmetry and quasiconfor-

mality. The proof can be found on [AB56].

Theorem 2.12 (Ahlfors-Beurling Extension). Any S-quasisymmetric homeomorphism

h : R→ R can be extended to a D-quasiconformal homeomorphism H : C→ C such that

H = h on R, the dilatation D depends only on S, H is smooth on C\R, and h 7→ H is

linear.

Corollary 2.13. Let h be an S-quasisymmetric homeomorphism on T onto itself and

also on Tr onto itself, for some r > 1. Then, h extends to a D-quasiconformal

homeomorphism H : A1,r → A1,r where D depends only on r and S.

Proof. Consider the covering map g : H → A1,r, z 7→ z−
i ln r
π with deck transformation

group generated by φ(z) = λz where λ = e
2π2

ln r . The map g can be extended such that

R>0 and R<0 cover T and Tr respectively.

The map h lifts to h̃ : R→ R where h(0) = 0 and g ◦ h̃ = h ◦ g on R∗. Moreover, h̃

can be chosen so that h̃(1),−h̃(−1) ∈ [1, λ) and h̃ commutes with φ.

As the function ln has bounded first derivative on (−λ, 1] ∪ [1, λ), it is bi-Lipschitz

and thus quasisymmetric. Consequently, g and h̃ are quasisymmetric on R∗. In fact, h̃

is λ2-quasisymmetric around 0 since for any interval I containing 0, |I| ≤ h̃(|I|) ≤ λ2|I|.
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Thus, h̃ is S′-quasisymmetric on R where S′ depends only on r and S.

By Theorem 2.12, we can extend h̃ to a D-quasiconformal H̃ : H → H where D

depends only on S′. By linearity of the extension operator, H̃ commutes with φ too.

Lift back to get a D-quasiconformal homeomorphism H : A1,r → A1,r.

2.3 Conformal Modulus

Consider a regular annulus Ar1,r2 and let Γ be the set of all curves on Ar1,r2 joining

the two boundaries Tr1 and Tr2 at the endpoints. Let γθ = {reiθ | r ∈ (r1, r2)}, then

2πLρ(Γ) ≤
∫ 2π

0
Lρ(Γ)dθ ≤

∫ 2π

0
Lρ(γθ)dθ ≤

∫ 2π

0

∫ r2

r1

ρ(reiθ)drdθ.

By triangle inequality, we have

(2π)2Lρ(Γ)2 ≤
∫∫

Ar1,r2

1

r
dθdr

∫∫
Ar1,r2

ρ2rdθdr = 2π log
(r2

r1

)
Aρ(Ar1,r2)

Rearranging, we then obtain λ(Γ) ≤ log(r2/r1)/2π. This upper bound is achieved if

we take ρ(z) = 1/|z|, so then the extremal length is λ(Γ) = log(r2/r1)/2π.

Since extremal length is a conformal invariant, we see that two regular annuli Ar1,r2
and As1,s2 are biholomorphic if and only if r1s2 = r2s1.

Definition 2.10. Define the conformal modulus mod(A) of a topological annulus A as

mod(A) =
1

2π
log r,

where A is biholomorphic to A1,r for some unique r > 1. If r =∞, then set mod(A) =∞.

Note that in the analysis of annuli, sometimes it is more convenient to work with

the set of all closed curves separating the two boundary components of the annulus. A

similar computation will tell us that the corresponding extremal length is equal to the

reciprocal of the modulus.

The modulus can be thought of as a measure of thickness of an annulus. By

definition, it is a conformal invariant, and under quasiconformal homeomorphisms, its

change is controlled by the dilatation due to Theorem 2.10. As a conformal invariant,

the modulus is a highly valued measure in holomorphic dynamics.

Proposition 2.14. Let f : A → A′ be a holomorphic covering map of degree d < ∞
between two topological annuli A and A′ in C, then

mod(A′) = dmod(A).

Proof. Since any topological annulus is biholomorphic to some regular annulus, we can

assume without loss of generality that f is a covering map from A1,r to A1,R for some

r,R > 1 and that f(1) = 1 on the boundary. The map f can be lifted via the universal
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covers gs : H→ A1,s, z 7→ z−
i ln s
π for s ∈ {r,R}, to a unique holomorphic map f̃ : H→ H

fixing (2π)k for all k ∈ Z. It turns out that f̃ has to be the identity and consequently

f(z) = gR ◦ f̃ ◦ g−1
r (z) = zlogr R exp

(
2πik logr R

)
,

where each k ∈ Z indicates a choice of branch of g−1
r . As the expression must be

independent of the choice of k ∈ Z, then logr R must be some positive integer d and f

simplifies to f(z) = zd, a holomorphic covering map of degree d. The equation in the

proposition follows immediately from R = zd.

In hyperbolic geometry, concentric circles are geodesic curves in a regular annulus.

Definition 2.11. Let A be a topological annulus in C and let φ : A1,r → A be a

biholomorphism. A closed curve γ ⊂ A is a geodesic curve of A if γ = φ(Tt) for some

t ∈ (1, r). We say that γ is the core curve of A if t =
√
r, i.e. the unique geodesic curve

splitting A into two annuli of equal moduli.

Proposition 2.15 (Grötzsch Inequality). If A and B are two topological annuli in C
such that B ⊂ A, then mod(B) ≤ mod(A). Moreover, if A1 and A2 are two disjoint

topological annuli in C, then for any annulus A such that A1 ∪A2 ⊂ A,

mod(A1) + mod(A2) ≤ mod(A).

Proof. If mod(B) =∞, then both A and B are punctured disks and the result is trivial.

Therefore, assume that mod(B) ∈ (0,∞). Consider curve families ΓA and ΓB consisting

of closed curves separating the two boundary components of A and B respectively. Pick

any arbitrary ρA ∈ A(A) and let ρB be its restriction on B, then AρA(A) ≥ AρB (B).

Since ΓB ⊂ ΓA, it follows that LρB (ΓB) ≥ LρA(ΓA), so then λ(ΓB) ≥ λ(ΓA). The

modulus is the reciprocal of the extremal length of this curve family, hence we have

proven our first statement.

To prove the second, it is sufficient to consider the case the inner boundary of the

annulus A1 is the same as the outer boundary of another A2 and let A = int(A1 ∪A2)

be obtained by gluing the two. Assume as well that mod(A1) = mod(A2) ∈ (0,∞).

Consider three curve families Γ, Γ1 and Γ2 consisting of paths joining the inner and

outer boundaries of A, A1 and A2 respectively. For any allowable ρ ∈ A(A), we denote

by ρ1 and ρ2 its restrictions to A(A1) and A(A2), then Aρ(A) ≥ Aρ1(A1) + Aρ2(A2).

Pick any curve γ ∈ Γ and subcurves γi of γ in Γi for i = 1, 2. Taking the infimum across

all curves in Γ, we have

Lρ(γ) ≥ Lρ(γ) ≥ Lρ1(γ1) + Lρ2(γ2) ≥ Lρ1(Γ1) + Lρ2(Γ2)

Assume w.l.o.g. that ρi is normalised, i.e. Lρi(Γi) = Aρi(Ai) for i = 1, 2, then it is

immediate that λ(Γ) ≥ λ(Γ1) + λ(Γ1).

Remark. From the proof, it is obvious that we can generalise the proposition to arbitrary

curve families. The precise statement can be found from [Ahl06].
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Proposition 2.16. Let A ⊂ C be a topological annulus with inner and outer boundaries

I and O. Then,

mod(A) ≤ π

4
+

dist(I,O)

diamI
.

Proof. Rescale for convenience such that diamI = 1 and dist(I,O) = d > 0. Let a ∈ O
and b ∈ I such that |a− b| = d. There exists some c ∈ I such that |b− c| ≥ 1

2 . Consider

a family of simple closed curves Γ separating I from {a,∞}. Then, the extremal length

of λ(Γ) satisfies mod(A) ≤ λ(Γ)−1.

Let ρ : C→ {0, 1} be the characteristic function of U := {z ∈ C | dist(z, [a, b]) < 1
2},

the 1
2 -neighbourhood of the line segment [a, b]. Then, any γ ∈ Γ has to pass through U

as well as [a, b] and consequently Lρ(Γ) ≥ 1. Thus,

λ(Γ) ≥ Lρ(Γ)

A(ρ)
≥ 1

π
4 + d

.

Combining the two inequalities, mod(A) ≤ π
4 + d.

Lemma 2.17. Suppose K is a compact, simply connected subset of the unit disk D
containing 0 with mod(D\K) ≥ µ for some µ > 0. Then, there is a radius rµ ∈ [0, 1)

depending only on µ such that K ⊂ Dr.

Proof. Suppose instead that we have a sequence of compact subsets Kn all satisfying

the assumption for the same µ and sup{|z| : z ∈ Kn} → 1. Take a sequence of

biholomorphisms φn : Aδn,1 → D\K where φn(∂D) = ∂D and δn ≤ r0 := e−2πµ < 1. By

Montel’s theorem, the sequence φn restricted to Ar0,1 is normal, so it has a subsequence

φni compactly converging to some φ on compact subsets. Take the core curve γ

of A − r0, 1, then φ(γ) separates Kni from ∂D for sufficiently large i. This is a

contradiction.

Lemma 2.18. Let U b V be a pair of simply connected open subsets of C and let

mod(V \U) ≥ µ > 0. Then, any univalent f : V → C has a bounded distortion on U

depending only on µ, i.e. there is Cµ such that for all z, w ∈ U ,

|f ′(z)| ≤ Cµ|f ′(w)|.

Proof. Let g : D→ V be a Riemann map such that g(0) ∈ U . Let Ũ = g−1(U), then by

Lemma 2.17, Ũ is contained in Drµ . By Koebe distortion, g and f ◦ g have distortion

bounded by some C̃µ on Ũ . By chain rule, f has distortion bounded by C̃2
µ on U .

13



Definition 2.12. Let U ⊂ C be an open subset. The inner radius rU,z and the outer

radius RU,z of U about a point z ∈ U are

rU,z := sup{r > 0 | Dr(z) ⊂ U}, RU,z := inf{R > 0 | U ⊂ DR(z)}.

The eccentricity of U at z is the ratio RU,z/rU,z.

Lemma 2.19. Let f : U → V be a D-quasiconformal homeomorphism between two

open subsets of C. Let an open ball Dt(z) ⊂ U satisfy DR(f(z)) ⊂ V where R is the

outer radius of f(Dt(z)) about f(z), then f(Dt(z)) has eccentricity bounded by a constant

depending only on D.

Proof. Let r and R be the inner and outer radii of f(Dt(z)). Label w1, w2 ∈ ∂Dt(z) such

that |f(w1) − f(z)| = r and |f(w2) − f(z)| = R. Let A = {w ∈ V : r < |w − f(z)| <
R}. Let I and O be the inner and outer boundaries of f−1(A), then diamI ≥ t and

dist(I,O) ≤ t. By Proposition 2.16, f−1(A) has modulus bounded by π/4 + 1. In short,

1

2π
log

R

r
= mod(A) ≤ D mod

(
f−1(A)

)
≤ D

(π
4

+ 1
)
.

As such, the eccentricity is bounded by exp
(
2πD(π4 + 1)

)
.

2.4 Quasicircles and Quasidisks

Definition 2.13. A C-quasicircle is a Jordan curve γ in C such that γ is the image

of a circle S1 under a C-quasiconformal homeomorphism φ : Ĉ → Ĉ. We will call the

Jordan domain bounded by some C-quasicircle γ a C-quasidisk.

Definition 2.14. Let γ be a Jordan curve in C. Define a metric dd : γ × γ → [0,∞)

on γ by setting dd(x, y) as the minimum diameter of a subarc joining x and y. We say

that γ has C ′-bounded turning if for all x, y ∈ γ. dd(x, y) ≤ C ′|x− y|.

Lemma 2.20. Let γ be a Jordan curve in C. If there is some ε > 0 such that for

all x, y ∈ γ, the subarc γx,y joining x and y satisfies diam(γx,y) ≤ C ′|x − y| whenever

|x−y| ≤ ε, then γ has C ′N -bounded turning, where N is the minimum number of subarcs

of diameter ε needed to cover γ.

Proof. If |x−y| ≤ ε, then obviously dd(x, y) ≤ C ′|x−y| by the assumption. If |x−y| > ε,

then we can pick a number of points x0, x1, . . . xm along γ where x0 = x, xm = y and

|xi − xi+1| ≤ ε for some m ≤ N . By the triangle inequality,

diam(γx,y) ≤
m∑
i=1

diam(γxi−1,xi) ≤
m∑
i=1

C ′|xi−1 − xi| ≤ εmC ′

Applying ε < |x− y| and m ≤ N , we then have our desired inequality.

14



Proposition 2.21. Any 0-symmetric Jordan domain D bounded by a C ′-bounded

turning curve has bounded eccentricity with constant 2C ′ + 1.

Proof. Let r and R be the inner and outer radii of D about 0 and let x, y ∈ ∂D

be such that |x| = r and |y| = R. By symmetry and bounded turning condition,

dd(x, y) ≤ dd(y,−y) and dd(y,−y) ≤ 2C|y|. Consequently,

R

r
=
|x|
|y|
≤ |x− y|

|y|
+ 1 ≤ dd(x, y)

1
2C dd(y,−y)

+ 1 ≤ 2C + 1.

The inequality above gives us the desired result.

It turns out that the bounded turning condition is just a more geometric way of

characterising quasicircles.

Theorem 2.22. A Jordan curve γ is a C-quasicircle if and only if it has C ′-bounded

turning. Moreover, C and C ′ depend only on each other.

Refer to [LV73] or [Ahl06] for the details of the proof of the theorem. One particular

example of quasicircles that will render useful is the following.

Proposition 2.23. The core curve of an annulus A where mod(A) ≥ µ > 0 is a C(µ)-

quasicircle.

Proof. Consider a biholomorphism φ : A1,r2 → A where r = exp
(
πmod(A)

)
and pick

an arbitrary point x along the core curve Tr. The disk Dr−1(x) contains a subarc of Tr
of some angle θ(r). By Koebe 1/4, the open disk D 1

4
(r−1)|φ′(x)|(φ(x)) is a subset of the

image φ(Dr−1(x)).

Take ε(r) = 1
8(r−1) min|z|=r |φ′(z)|, and pick any y ∈ Tr such that |φ(x)−φ(y)| ≤ ε.

By Koebe distortion, there is some R = R(r) > 0 and c = c(r) > 0 such that for all

z ∈ DR(x),

φ(z) ∈ Dε(φ(z)), |φ′(z)| ≤ c|φ′(x)|.

The second inequality gives us a bound on the length of subarc γφ(x),φ(z). Specifically,

if Lx,z denotes the arc length of the subarc of Tr ∩ DR(x) joining x and r, then

L(γφ(x),φ(z)) ≤ c|φ′(x)|Lx,r. The ratio of arc to chord of a circle is always bounded

by π/2, so then we can improve our inequality to

L(γφ(x),φ(z)) ≤
π

2
c|φ′(x)||x− z|. (2.1)

Again, Koebe 1/4 on D|x−z|(x) yields

|φ′(x)||x− z| ≤ 4|φ(x)− φ(z)|. (2.2)

Combining (2.1) and (2.2) gives us diam(γφ(x),φ(z)) ≤ C ′|φ(x)− φ(z)| whenever |φ(x)−
φ(z)| ≤ ε, where C ′ = C ′(r). As x and z are arbitrary, Lemma 2.20 gives our desired

result.
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Chapter 3

Holomorphic Dynamics

We will review the basic theory of rational dynamics. Most of the results in this

chapter can be found in classical textbooks, e.g. [Mil11] and [CG05], as well as Douady

and Hubbard’s Orsay notes [DH].

3.1 Dynamics of Rational Maps

Rational maps make up Hol(Ĉ), the space of all holomorphic maps from Ĉ to itself.

Möbius maps, i.e. rational maps of degree 1, make up the space of all biholomorphisms

from Ĉ to itself. The dynamics of Mobius maps are very well understood and rather

uninteresting. From now on all rational maps are taken to be of degree ≥ 2.

Definition 3.1. Let f ∈ Hol(Ĉ). The forward orbit of a point z ∈ Ĉ is the sequence

O+
f (z) := {fn(z) | n ≥ 0},

and the backward orbit of z is the set

O−f (z) := {w | fn(w) = z for some n ≥ 0}.

Definition 3.2. Let f ∈ Hol(Ĉ). A point z0 is a periodic point of f of period p if

fp(z0) = z0 for some positive integer p. We say that z is preperiodic if fp+m(z0) = fm(z0)

for some positive integers p and m.

Remark. We see that the forward orbit O+
f (z) is finite if and only if z is a periodic or

preperiodic point of f .

Definition 3.3. The multiplier of a periodic point z0 of period p is the value λ :=

(fp)′(z0). If z0 = ∞, we can define the derivative on the local chart z → 1
z by letting

λ := (gp)′(0) where g(z) = f(z−1)−1. We can classify periodic points according to its

multiplier:
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|λ| z0

0 superattracting

< 1 attracting

1 indifferent

> 1 repelling

Additionally, we say that z0 is parabolic if λ is a root of unity and irrationally

indifferent if otherwise.

The classification above is in sync with the local topological dynamics near the

periodic point.

Proposition 3.1. Let z0 be a periodic point of f of period p. Then, z0 is attracting

(possibly superattracting) if and only if for any open neighbourhood U of z0 there is an

open neighbourhood U of z0 such that

fp(U) ⊂ U and for all z ∈ U, lim
n→∞

fnp(z) = z0.

Moreover, z0 is repelling if and only if there is an open neighbourhood V of z0 such that

for all z ∈ V \{z0}, there is some nz ∈ N such that fnz(z) /∈ V.

Example 3.1. Any polynomial f of degree d ≥ 2 has a superattracting fixed point at

∞. Indeed, its multiplier is

λ :=
d

dz
f ′(z−1)−1

∣∣∣∣
z=0

=
f ′(z−1)

z2f(z−1)2

∣∣∣∣
z=0

= 0.

It turns out that in the case where a periodic point z0 of a map f is not indifferent,

f is locally holomorphically conjugate to either a linear map z 7→ λz or a power map

z 7→ zd.

Theorem 3.2 (Koenigs). Let f : U → V be a holomorphic map with fixed point z0

with multiplier λ. If z0 is attracting or repelling, i.e. |λ| /∈ {0, 1}, then there is an

open neighbourhood W of z0 and a univalent map φ : f(W ) → C such that φ(z0) = 0,

W b f(W ), and φ◦f ◦φ−1(z) = λz for all z ∈ φ(W ). The map φ is called the lineariser

of f about z0 and it is unique up to multiplication by a nonzero constant.

Theorem 3.3 (Böttcher). Let f : U → V be a holomorphic map with a superattracting

fixed point z0 of order d, i.e. f − z0 has a zero at z0 of order d. Then, there is an

open neighbourhood W of p and a univalent map φ : f(W ) → C such that φ(z0) = 0,

W b f(W ), and φ ◦ f ◦φ−1(z) = zd for all z ∈ φ(W ). The map φ is called the Böttcher

coordinate of f at z0 and it is unique up to multiplication by a (d− 1)-th root of unity.
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Definition 3.4. The Fatou set F (f) of f is the set of points z ∈ Ĉ such that {fn}n∈N
is normal on some neighbourhood of z. The Julia set of f is the complement J(f) :=

Ĉ\F (f).

We will summarise some important and nontrivial properties of the Julia set.

Theorem 3.4. Let f be a rational map of degree d ≥ 2.

(A) The Julia set J(f) is completely invariant, i.e. f−1(J(f)) = J(f) = f(J(f)).

(B) The set of repelling periodic points of f is dense in J(f).

(C) The backward orbit O−f (z) of any point z ∈ J(f) is dense in J(f).

(D) For any z ∈ J(f) and any neighbourhood U of z, J(f) ⊂ fN (U) for sufficiently

large N ∈ N.

Definition 3.5. Let z0 be an attracting or superattracting periodic point of f of period

p. We define the basin of attraction of the attracting cycle {fk(z0)}k=0,1,...p−1 by the set

Af (z0) := {z | fnp(z)→ fk(z0) for some k}.

The immediate basin of attraction of the cycle is the union of p connected components

of Bf (z0) containing fk(z0) for some k. The basin of attraction is completely invariant

open subset of the Fatou set of f .

Theorem 3.5 (Sullivan). Let U be a connected component of the Fatou set F (f) of

a rational map f of degree d ≥ 2. Then, U is either periodic or preperiodic, i.e.

fp+m(U) = fm(U) for some integers p > 0 and m ≥ 0. Moreover, if m = 0, exactly one

of the following holds:

(A) U is attracting: there is a unique attracting periodic point of period p in U ;

(B) U is parabolic: there is a parabolic periodic point z0 of period p on ∂U such that

fnp(z)→ z0;

(C) U is a Siegel disk: fp|U is conformally conjugate to some irrational rotation of the

unit disk D about 0;

(D) U is a Herman ring: U is a topological annulus and fp|U is conformally conjugate

to some irrational rotation on a regular annulus.

The first part of the theorem is known as Sullivan’s theorem of no wandering domains

([Sul85]). In proving this theorem, Sullivan pioneered the use of quasiconformal maps

in holomorphic dynamics which has now led to many other important results.

To complete the picture, we would like to point out that a rational map f may not be

linearisable around an indifferent periodic point z0. In the parabolic case, Leau-Fatou

flower theorem gives us a conjugacy with translation z 7→ z + 1 on the parabolic basin.

If z0 is irrationally indifferent, then if z0 lies in F (f), it must lie in the Siegel disk and

we have some conjugacy described in case (C) of the theorem above. In fact, this is the

only case where an irrationally indifferent point z0 is linearisable.
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Definition 3.6. An irrationally indifferent periodic point z0 of period p of a rational

map f is called a Cremer point if and only if z0 ∈ J(f).

Proposition 3.6. Every immediate basin of an attracting or parabolic periodic point of

a rational map f contains at least one critical point.

Since a rational map of degree d has at most 2d−2 critical points, we have an upper

bound on the number of periodic cycles of f . The following theorem gives a sharp upper

bound on the number of non-repelling cycles.

Theorem 3.7 (Fatou-Shishikura Inequality). Any rational map f ∈ Hol(Ĉ) of degree d

has at most 2d− 2 non-repelling periodic cycles.

The proof of the theorem relies on quasiconformal surgery, a technique also used by

Sullivan to prove the nonexistence of wandering domains for rational maps. We will use

similar surgery techniques later on in Theorem 4.3.

Definition 3.7. The postcritical set P (f) is the closure of the forward orbit of critical

values of f . A map f is postcritically finite if |P (f)| <∞.

Proposition 3.8. Let f be a rational map with some irrationally indifferent periodic

point z0.

(A) If z0 lies in a Siegel disk U , then ∂U ⊂ P (f).

(B) If z0 is a Cremer point, then z0 ∈ P (f).

3.2 Dynamics of Quadratic Maps

Definition 3.8. The filled Julia set K(f) of a non-constant polynomial f is the

complement of the attracting basin of infinity Af (∞) in Ĉ.

As Af (∞) is an open neighbourhood of ∞, K(f) is compact in C and completely

invariant under f .

The following is a list of important results on polynomial dynamics. The proof relies

on the maximum modulus principle and Montel’s theorem.

Proposition 3.9. If f is a polynomial of degree d ≥ 2 with filled Julia set K(f),

(A) f has no Herman rings;

(B) K(f) is full;

(C) ∂K(f) = J(f).

The following is an improvement of Böttcher’s theorem in the context of polynomials.
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The details are explained thoroughly in [Mil11, §9].

Theorem 3.10. Let f be a polynomial of degree d and let the filled Julia set K(f)

contain all finite critical points of f . Then, if φ is a Böttcher coordinate of f at ∞,

then φ extends to a biholomorphism φ : Af (∞)→ D.

We will focus our attention to the dynamics of quadratic maps. Quadratic maps

enjoy certain properties which polynomials of higher degrees do not. For instance, the

uniqueness criterion in Böttcher’s theorem implies that the Böttcher coordinate of a

quadratic map is unique.

Definition 3.9. In the context of Theorem 3.10, we define the Böttcher map of a

quadratic map f as the unique biholomorphism Bf : C\K(f) → C\D, z 7→ φ(z)−1

satisfying the conjugacy Bf ◦ f(z) = Bf (z)2.

Having only one finite critical point, quadratic maps also satisfy a stronger version

of Fatou-Shishikura inequality.

Corollary 3.11. Any quadratic map f has at most one finite non-repelling periodic

cycle in C.

Therefore, it makes sense for us to say that a quadratic map is attracting or

indifferent when it has a finite attracting or indifferent cycle, or repelling when otherwise.

Proposition 3.12. Any quadratic map f(z) = az2 + bz+ d is conformally conjugate to

a unique quadratic fc of the form fc(z) = z2 + c.

Proof. Set c := ad+ b
2

(
1− b

2

)
. The affine map g(z) = az+ b

2 satisfies g ◦ f = fc ◦ g.

To determine the dynamics of all quadratic maps, it is equivalent to studying those

of the form fc(z) = z2 + c. All quadratic maps will now be assumed to be of the form

fc, unless otherwise stated.

The map fc has a unique finite critical point 0 and critical value c. If 0 lies in K(fc),

then the Böttcher map is well-defined and we can say more about the topology of K(fc).

Theorem 3.13 (Dichotomy Theorem). Let fc be a qudaratic map with filled Julia set

K(fc). If 0 ∈ K(fc), K(fc) is connected. Else, K(fc) is a Cantor set.

Definition 3.10. The Mandelbrot set M is the set of all parameters c ∈ C such that

the filled Julia set K(fc) is connected.

Remark. Equivalently, we can say that c ∈ M if and only if K(fc) is a hull if and only

if fnc (0) 6→ ∞ as n→∞.
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Proposition 3.14. M := {c ∈ C | |fnc (0)| ≤ 2 for all n ∈ N} and in particular, M ⊂ D2.

If c ∈ D2, then the Julia set also satisfies J(fc) ⊂ D2.

Proof. Suppose |c| = 2+ε for some ε > 0. Claim that |fnc (0)| ≥ 2+2nε for all n. Indeed,

we can prove this inductively. If it’s true for k − 1, then

|fkc (0)| = |fk−1
c (0)2 + c| ≥ (2 + 2k−1ε)2 − |c| ≥ 4 + 2k+1ε− 2− ε ≥ 2 + 2kε.

Thus, fnc (0)→∞ as n→∞, and {|z| > 2} ⊂ Ĉ\M.

Suppose now that |c| ≤ 2 and |z| = 2 + ε for some ε > 0. Similar to above, we

can use triangle inequality to inductively prove that |fnc (z)| ≥ 2 + 2nε and consequently

conclude that fnc (z)→∞ as n→∞.

The proposition gives rise to the escape time algorithm, one of the simplest

procedures to illustrate the Mandelbrot set, as well as all connected Julia sets of

quadratic maps up to biholomorphism simply by plotting points lying in the closed

disk D2 which does not escape outside D2 for a high number of iterates.

The following is a theorem by Douady and Hubbard.

Theorem 3.15. The map Φ : Ĉ\M→ Ĉ\D, c 7→ Bfc(c), where Bfc denotes the Böttcher

map of fc, is a biholomorphism.

Corollary 3.16. The Mandelbrot set M is a hull in C.

Proof. We know that Ĉ\M is a simply connected open set containing ∞, so M must be

connected, compact, and in particular full. Non-degeneracy is obvious as ĈM cannot be

biholomorphic to the complex plane.

Figure 3.1: The Mandelbrot set M is rendered using the escape time algorithm.
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Definition 3.11. A rational map f ∈ Hol(Ĉ) of degree d ≥ 2 is hyperbolic if every

critical point of f lies in some attracting basin.

Proposition 3.17. A quadratic map fc where is hyperbolic if and only if either c /∈ M
or fc has a finite attracting cycle.

Proof. If c /∈ M, the critical point 0 lies in the basin of infinity and hyperbolicity is

obvious. Suppose c ∈M. If fc is hyperbolic, then 0 must tend to some finite attracting

cycle which is not∞. If fc has a finite attracting cycle, then by Proposition 3.6, it must

contain some critical point. Since 0 is the only finite critical point, this has to be 0.

By fullness, the connected components of int(M) are topological disks. When c ∈M
is a hyperbolic parameter, the postcritical set P (f) lies entirely in the attracting basin

of a finite attracting cycle. It is not difficult to show that hyperbolicity is preserved

under small pertubations of c, and thus hyperbolic parameters are contained in int(M).

Definition 3.12. A connected component H of int(M) is hyperbolic if all parameters

in H are hyperbolic. Otherwise, H is called queer.

Proposition 3.18. Let H be a connected component of int(M).

(A) If H is queer, H contains no hyperbolic parameters.

(B) If H is hyperbolic, H contains a unique parameter c such that 0 is a superattracting

periodic point of fc of some period p.

Definition 3.13. In the case (B) above, we call such a parameter c a superstable

parameter or centre of H, and p the period of H.

3.3 External Rays

Let K be a hull in C. By Riemann mapping theorem, we have a biholomorphism

φ : C\K → C\D. Pull back via φ the foliations of geodesic rays and potentials in C\D
to C\K external rays and equipotentials.

Definition 3.14. An external ray for K of external angle θ is of the form

Rθ = {φ−1(re2πiθ) | r ∈ (1,∞)},

and an equipotential for K of radius r > 1 is of the form

Er = {φ−1(re2πiθ) | θ ∈ [0, 1)}.

A point x ∈ ∂K is a landing point of K if there exists an external ray Rθ such that

φ−1(re2πiθ)→ x as r → 1.
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The following is a result by Douady.

Theorem 3.19 (Landing Theorem). Suppose K ⊂ C is a hull and x ∈ ∂K is a landing

point of n external rays. Then, K\{x} has n components.

Now, consider a polynomial f(z) of degree d with connected filled Julia set K(f)

(in particular, this set is a hull). The Böttcher map Bf : C\K(f) → C\D is a

biholomorphism and it induces foliations of external rays and equipotentials for K(f).

f will act on these foliations by f(Rθ) = R2θ and f(Er) = Er2 .

An external ray Rθ is periodic when there is some positive m ∈ N where fm(Rθ) =

Rdmθ = Rθ. If so, the angle θ must be rational of the form dk

dm−1 where k = 0, 1, . . .m−1.

Theorem 3.20. Let f be a polynomial with connected filled Julia set K(f). Any periodic

external ray lands on J(f) at a repelling or parabolic periodic point of f . Moreover, any

repelling or parabolic periodic point x is a landing point of m external rays, where m is

the number of components of K(f)\{x}.

Now consider a quadratic map f(z) = z2 + c with connected Julia set. The external

ray R0 of K(f) of angle 0 is a fixed ray under f and it must land at a repelling or

parabolic fixed point. We call it the β fixed point, or the zero angle fixed point.

If c = 1
4 , then β is the only fixed point of f . Otherwise, we have another fixed point,

and we shall call it α. β is not a dividing fixed point, and if α is parabolic or repelling,

it is dividing and it disconnects K(f) into a number of components equal to the number

of external rays landing at α.

Figure 3.2: External rays landing at the α fixed point of
f(z) = z2 − 0.52− 0.58i and its preimage.
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Lemma 3.21. Let f be a quadratic map. The critical point 0 and the β fixed point lie

in different components of K(f)\{−α}.

Proof. Let the external rays landing at α divide the plane into q open sectors Si for

i = 1, . . . q. Let Sq be the unique one containing 0, then we can label other sectors such

that f univalently maps each Si onto Si+1 where i < q. Clearly, the β fixed point must

lie in Sq, since Sq ⊂ f(Sq). The external rays landing at −α will divide the Sq into

q− 1 components, namely S′i for i = 1, . . . q− 1 and an infinite strip S′q containing 0. As

f(S′q) = S1, β must lie in one of the sectors S′i.

Theorem 3.22 (Carathéodory Theorem). Let f be a polynomial of degree d ≥ 2 with

connected filled Julia set K(f). The following are equivalent:

(A) K(f) is locally connected;

(B) the inverse Böttcher map Bf extends continuously to Bf : C\D→ C\intK(f);

(C) every external ray Rθ lands at some point on z(θ) ∈ ∂K(f).

Remark. Items (A) and (B) can be generalised to arbitrary hulls in C. See [DH, Chapter

2 §3].

The theorem hints at the extreme importance of local connectivity of these dynamical

objects. Specifically, it enables us to extend our knowledge on the dynamics in C\K(f)

to the Julia set itself and retrieve a complete dynamical information on the whole

dynamical plane. Local connectivity of M also enables us to deduce more dynamical

information on the maps fc where c ∈ ∂M. Thus, the MLC is a natural and vital

problem for dynamicists to solve.

Conjecture (MLC). The Mandelbrot set M is locally connected.

The MLC conjecture is one of the central problems in the study of holomorphic

dynamics. In particular, the MLC implies the conjecture of density of hyperbolic

parameters in the Mandelbrot set.
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Chapter 4

Quadratic-Like Maps and

Renormalisation

4.1 Polynomial-Like Maps

Recall that a non-constant polynomial of degree d is a branched covering map of

degree d having d − 1 finite critical points counting multiplicity. Moreover, by basic

complex analysis, any entire function f : C → C is proper if and only if f is a non-

constant polynomial. In this section, we wish to introduce a topological generalisation

of polynomials following [DH85] and [McM94a, Chapter 5].

Definition 4.1. A polynomial-like map f : U → V of degree d is a proper holomorphic

branched covering map of degree d such that both U and V are topological disks where

U b V ⊂ C. The map f : U → V is a quadratic-like map if it is a polynomial-like map

of degree 2.

The Riemann-Hurwitz formula can be used to show that any polynomial-like map

of arbitrary degree d must have d−1 critical points counting multiplicity. In particular,

any quadratic-like map f : U → V has a unique critical point.

From now on, unless otherwise stated, we shall normalise any quadratic-like map f

such that its critical point is 0, the domains U and V are 0-symmetric and f is an even

function. This allows us to express f as a composition h ◦ f0, where f0(z) = z2 is the

doubling map on U and h : f0(U)→ V is a biholomorphism.

Example 4.1. Let f : U → V be a quadratic-like map such that fn(0) ∈ V for some

integer n > 1. Then, fn : f−n+1(U)→ V is a polynomial-like map of degree 2n.

Example 4.2. Let f be a non-constant polynomial of arbitrary degree d with filled

Julia set K(f) defined in §3.2. Recall that f has a superattracting fixed point at ∞, so

then we can always find a large enough bounded open domain U containing K(f) and

all finite critical points of f such that f : U → f(U) is polynomial-like of degree d.
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In the example above, notice that regardless of the choice of the domain U , the

filled Julia set K(f) of the polynomial f coincides with the set
⋂
n∈N f

−n(U). We can

therefore define invariant sets corresponding to a polynomial-like map in a similar way.

Definition 4.2. The filled Julia set of a polynomial-like map f : U → V is the invariant

set K(f) :=
⋂
n∈N f

−n(U). The Julia set of f is J(f) := ∂K(f).

The filled Julia set K(f) of a polynomial-like map f : U → V is non-empty since

K(f) can be expressed as the limit
⋂
n∈N f

−n(U) and each f−n(U) is compact due to

properness of f . By maximum modulus principle, we can also easily deduce that K(f)

is full.

The domains U and V are only required to be open, simply connected, and U b V .

It turns out that we can in fact assume that both have smooth boundaries.

Lemma 4.1. Let f : U → V be a polynomial-like map of degree d. For any ε ∈ (0, 1),

there are open domains U ′ and V ′ with smooth boundaries such that f : U ′ → V ′ is a

polynomial-like map of degree d with the same filled Julia set K(f) and

εmod(V \U) ≤ mod(V ′\U ′) ≤ mod(V \U).

Proof. Let g : A1,r → V \U be a biholomorphism where r = 2π exp
(
mod(V \U)

)
> 1.

For any t ∈ (rε, r), the geodesic curve Tt of A1,r is sent to a smooth curve g(Tt). The

number of critical values of f is finite, so we can pick t such that the open domain

V ′ bounded by the smooth curve g(Tt) contains all the critical values. Letting U ′ :=

f−1(V ′), f : U ′ → V ′ remains polynomial-like of the same degree. Note that this

restriction still has the same filled Julia set K(f) since fn(z) ∈ U for all n if and only if

fn(z) ∈ V ′ for all n. The bounds on mod(V ′\U ′) follow from Grötzsch inequality.

Definition 4.3. We say that two polynomial-like maps f : U → V and g : U ′ → V ′ are

hybrid conjugate if there is a quasiconformal homeomorphism φ from a neighbourhood

of the filled Julia set K(f) to a neighbourhood of K(g) such that φ ◦ f = g ◦ φ and φ is

conformal on on K(f).

Hybrid conjugacy is indeed an equivalence relation. We call the corresponding

equivalence class the hybrid class of f . This conjugacy turns out to be the right type

of conjugacy to consider when comparing quadratic-like maps since most dynamical

information are contained near the filled Julia set. Note that the concept of hybrid

conjugacy can be naturally extended to non-constant polynomials.

Theorem 4.2. Let f and g be two polynomials of the same degree d with connected

filled Julia set K(f) and K(g) respectively. If f and g are hybrid conjugate, then f and

g are affinely conjugate.
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Proof. Assume without loss of generality that f and g are monic of degree d. Let φ be

the corresponding hybrid conjugation and let Bf and Bg be Böttcher maps of f and g

respectively. Pick any r > 1 and define domains Wf and Wg by

Wf = K(f) ∪B−1
f (A1,r) and Wg = K(g) ∪B−1

g (A1,r).

Let N be an open neighbourhood of K(f) compactly contained in Wf . Define a

quasiconformal homeomorphism φ0 : C→ C as

φ0(z) =

φ(z), if z ∈ N,

B−1
g ◦Bf (z), if z ∈ C\Wf ,

and let φ0 to be quasiconformal on Wf\N such that it is continuous on the boundaries

∂Wf and ∂N , which are smooth.

By the Böttcher conjugacy, we have that f0 = Bf ◦ f ◦B−1
f = Bg ◦ g ◦B−1

g , thus φ0

is a holomorphic conjugation between f and g outside Wf . Moreover, both φ and φ0

are conjugacies along the critical orbits of f and g.

Let {φn}n∈N be a sequence of quasiconformal homeomorphisms such that g ◦φn+1 =

φn ◦ f and each φn is a conjugation along the critical orbits of f and g. By hybrid and

Böttcher conjugacies, for each n, φn = φ on K(f) and φn = B−1
g ◦Bf outside Wf .

By construction, all φn, n ≥ 0 have the same dilatation. By Theorem 2.8, there is a

subsequence converging to some limit φ∞. Any z ∈ C\K(f) will eventually escape Wf

via iterations of f , so φn(z) eventually coincides with B−1
g ◦Bf (z) due to the Böttcher

conjugacy. Thus, φ∞ = φ on K(f) and φ∞ = B−1
g ◦Bf in C\K(f). As φ∞ is conformal

almost everywhere, it has to be a conformal automorphism of C, hence an affine map

conjugating f and g.

Theorem 4.3 (Straightening Theorem). Let f : U → V be a polynomial-like map of

degree d. Then, f is hybrid conjugate to some polynomial g of degree d. Moreover,

if K(f) is connected, g is unique up to affine conjugacy. If d = 2, there is a unique

parameter c ∈M such that f is hybrid conjugate to the quadratic map fc.

Proof. From Lemma 4.1, we can assume U and V have a smooth boundaries. Pick any

r > 1 and a Riemann map φ : U → Dr. By smoothness, the map φ can be extended

continuously along the boundary ∂U . Define φ on ∂V such that φ is equivariant on the

boundary, i.e. φ ◦ f(z) = φ(z)2 on z ∈ ∂U . By Corollary 2.13, we can extend φ to be

quasiconformal on V \U → Dr2\Dr.
We now wish to construct a function F : Ĉ → Ĉ which has the dynamics of φ near

0 and of f0(z) = z2 near ∞. Define F as follows:

F (z) =

φ ◦ f ◦ φ−1(z), if z ∈ Dr,

f0(z), if z ∈ Ĉ\Dr.

By equivariance, F is continuous on the boundaries and is in fact quasiregular on Ĉ.

Moreover, F is holomorphic on F−1(Dr) = φ(f−1(U)) and Ĉ\Dr. Using complex chain
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rule, the complex dilatation of F on Dr\F−1(Dr) is

µF (z) = µφ
(
f ◦ φ−1(z)

)(φ−1)z(z)

(φ−1)z(z)
. (4.1)

We will now seek an F -invariant Beltrami coefficient µ. Define µ = σ on φ(K(f))

and outside of Dr, where σ ≡ 0. On Dr\φ(K(f)), we define µ by its pullback, i.e. if

z ∈ Dr, Fn(z) ∈ Ĉ\Dr, where n is the first escape time of z out of the disk Dr, then

µ(z) = (Fn)∗µ(z).

For z ∈ Dr\F−1(Dr), µ(z) coincides with the complex dilatation µF (z) of F .

Moreover, for z ∈ F−1(Dr)\φ(K(f)), as F is holomorphic, chain rule leads us to

µ(z) = µ(F (z))
Fz(z)

Fz(z)
, (4.2)

so then ‖µ‖∞ = ‖µF ‖∞ < 1. By MRMT, we have a unique quasiconformal

homeomorphism G : Ĉ→ Ĉ fixing 0, 1, and∞ such that Gz = µGz. Let g = G◦F ◦G−1.

As µ is F -invariant, g must be a rational map. By construction, g−1(∞) = ∞, so g

must be a polynomial of degree d. We have then created a hybrid conjugation G ◦ φ
from f to g.

From Theorem 4.2, having a connected K(f) implies that g must be unique up to

affine conjugacy. If d = 2, by Proposition 3.12, g must be affine conjugate to a unique

fc. As K(fc) is connected, the parameter c must also lie in the Mandelbrot set.

Figure 4.1: The map f(z) = 2 cos(z)− 1.9 + 0.7i has a quadratic-like restriction
from f−1(V ) ∩ V onto V where V is a square of side π centred at 0.

The filled Julia set, shown in black, is a Douady rabbit.
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Definition 4.4. A map φ : V \U → Ar,r2 from the proof of the theorem above is the

tubing of f . We define the straightening operator χ : f 7→ fc to be the map from the

space of quadratic-like maps with connected filled Julia set to the space of quadratic

maps fc where c ∈M, sending a quadratic-like map f to the unique quadratic map fc.

The straightening theorem allows us to conveniently transfer our knowledge of the

dynamics of polynomials to the dynamics of polynomial-like maps.

Corollary 4.4. Let f : U → V be a polynomial-like map of degree d. Then:

(A) repelling periodic points of f are dense in J(f);

(B) for any z ∈ J(f), the backward orbit O−f (z) is dense in J(f);

(C) for any z ∈ J(f) and open neighbourhood W ⊂ U of z, J(f) ⊂ fN (U) for

sufficiently large N ∈ N;

(D) any immediate attracting or parabolic basin contains a critical point.

Moreover, if f is quadratic-like,

(E) f has at most one non-repelling periodic cycle;

(F) K(f) is either a connected set or a Cantor set, and K(f) is connected if and only

if K(f) contains the critical point 0.

It is natural to ask whether the filled Julia set of a polynomial-like map f depends

on the choice of domains U b V .

Proposition 4.5. Let fi : Ui → Vi be two polynomial-like maps of degree di for i = 1, 2

such that f1 = f2 = f on U1 ∩U2. If U is a connected component of U1 ∩U2 containing

0 and if V := f1(U), then f : U → V is a polynomial-like map of degree d ≤ di for

i = 1, 2 with filled Julia set K(f) = U ∩K(f1) ∩K(f2). Additionally, if d = d1 = d2,

then K(f) = K(f1) = K(f2).

Proof. The map f : U → V is a proper covering map as it is a restriction of polynomial-

like maps f1 and f2. The number of critical points of f is bounded above by that

of f1 and f2, thus f has degree d ≤ min{d1, d2}. Moreover, we can express K(f) as⋂
n(f−n1 (U1) ∩ f−n2 (U2) ∩ U).

Suppose d = d1 = d2, then for any x ∈ J(f), the backward orbit O−f (x) will coincide

with O−fi(x) for i = 1, 2. By the density of the backward orbit of x, we then have

J(f) = J(f1) = J(f2).

Definition 4.5. The intersection of two polynomial-like maps f1 : U1 → V1 and f2 :

U2 → V2 is the polynomial-like map f : U → V constructed in the previous proposition.

Lemma 4.6. Let f be a polynomial with connected K(f) and U be a topological disk

in C\K(f) such that its boundary is a simple closed curve intersecting J(f) on a closed

non-degenerate arc. Then, fn(U) separates K(f) from ∞ for sufficiently large n.
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Proof. As K(f) is connected, the Böttcher map extends univalently to a Riemann map

Bf : C\K(f) → C\D conjugating f and f0(z) = zd, where d is the degree of f . Then,

fn0 (Bf (U)) eventually separates K(f0) = D from ∞ (and is in fact an annulus). Pull it

back via Bf to obtain the result.

Theorem 4.7 (Connectedness Principle). Let f be a polynomial with connected filled

Julia set K(f) such that there is a pair of Jordan domains U and V and some n ∈ N
such that fn : U → V is a polynomial-like map with connected filled Julia set Kn. Then,

L ∩Kn is connected for any closed connected subset L ⊂ K(f).

Proof. We know that Jn := ∂Kn ⊂ J(f). Suppose Kn is a proper subset of K(f)

(otherwise the result is trivial), and suppose L ∩Kn is non-empty and not connected.

We can check that there is a bounded component W of C\(L∪Kn) where L∩∂W ( ∂W .

By maximum modulus principle, as ∂W ⊂ K(f), W lies in K(f) too.

There is a simple arc γ in W connecting two distinct points in Jn on its ends. From

Lemma 4.6, the open region U bounded by γ∪Kn eventually surrounds Kn and separates

it from∞, but then as U ⊂ K(f), for all sufficiently large n, fn(U) ⊂ K(f) implies that

Kn must lie in the interior of K(f). This contradicts the fact that ∂Kn ⊂ ∂K(f).

4.2 Renormalisation

Definition 4.6. A quadratic map f ≡ fc with connected filled Julia set K(f) is

renormalisable if there exist an integer n > 1 and open domains Un and Vn containing

the critical point 0 such that fn : Un → Vn is a quadratic-like map with connected filled

Julia set. We will call this restriction of fn the n-renormalisation of f .

Remark. We can also say that a quadratic-like map g : U → V is n-renormalisable if

there exists a natural number n > 1 and open domains Un, Vn ⊂ V containing 0 such

that gn : Un → Vn is quadratic-like with connected filled Julia set. With this definition,

we have that a quadratic-like map g is n-renormalisable if and only if the straightening

of g, i.e. some quadratic map fc is n-renormalisable. As such, we can again transfer all

of our results we are going to discuss on renormalisation of quadratic maps to that of

quadratic-like maps.

Proposition 4.8. Any two n-renormalisations of a quadratic map f have the same

filled Julia set.

Proof. Let g1 : U1 → V1 and g2 : U2 → V2 be two renormalisations of f with period n.

K(g1) is a connected closed set in K(f), so by connectedness principle, K(g1)∩K(g2) is

connected. We then obtain K(g1) = K(g2) immediately by applying Proposition 4.5 to

the restriction of gi on a connected component of U1∩U2 containing K(g1)∩K(g2).
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Suppose f is n-renormalisable with renormalisation fn : Un → Vn. Following

McMullen’s notation, we will denote by Kn the unique filled Julia set of the n-

renormalisation of f . Call the images Kn(i) := f i(Kn), for all i = 1, 2, . . . n, the small

filled Julia sets. Note that these are cyclically permuted by f and Kn(n) = Kn.

We will also let Vn(i) = f i(Un) and Un(i) the component of f i−n(Un) such that

Un(i) b Vn(i), for all i = 1, 2 . . . n. We will summarise its properties as follows:

• f : Un → Vn(1) is proper branched double covering map;

• for all i < n, f : Vn(i)→ Vn(i+ 1) is univalent;

• for all i, fn : Un(i) → Vn(i) is quadratic-like with critical point f i(0) and filled

Julia set Kn(i).

Lemma 4.9. Let f be an n-renormalisable quadratic map. For any non-empty subset

I ⊂ {1, 2, . . . n}, the union
⋃
i∈I Kn(i) is full.

Proof. The filled Julia set K(f) as well as all the small filled Julia sets Kn(i) are full.

Suppose for a contradiction that the set C\
⋃
i∈I Kn(i) has a bounded open component

W , and so by fullness, W ⊂ K(f). Then, pick a path γ : [0, 1] → W dividing W

into two such that their endpoints are distinct and lying on ∂W . The intersection

γ([0, 1]) ∩
⋃
i∈I Kn(i) is not connected, thus contradicting Theorem 4.7.

Theorem 4.10. Let f be an n-renormalisable quadratic map. The intersection between

any two distinct small filled Julia sets Kn(i) and Kn(j), where i 6= j, is either empty or

a singleton consisting of a repelling fixed point of fn. In the latter case, all intersections

of small filled Julia sets are fixed points of the same type (α or β).

Proof. Assume the Kn(i) ∩Kn(j) is non-empty, then by Theorem 4.7, it is connected.

Let W be the component of Un(i) ∩ Un(j) containing Kn(i) ∩Kn(j). Since the critical

points f i(0) and f j(0) do not lie in Kn(i)∩Kn(j), fn : W → fn(W ) must be univalent

and W b fn(W ). By Lemma 2.3, f−n : fn(W )→W must be a contraction with respect

to the hyperbolic metric on fn(W ) and Kn(i) ∩Kn(j) must be a singleton, specifically

a repelling fixed point of fn.

Now, suppose a pair of small filled Julia sets intersect at an α fixed point of fn while

another pair intersect at a β fixed point of fn. The two fixed points will be permuted by

f across all small filled Julia sets such that each Kn(i) will intersect some other small

filled Julia sets at its α and β fixed points, namely an and βn. Let αn and βn have

periods m and k respectively. We then have a graph of m + k vertices formed by each

αi and βi and n edges representing each small filled Julia set. As m+ k ≤ n, this graph

has a cycle, but then
⋃n
i=1Kn(i) is full by Lemma 4.9. This is a contradiction.

Definition 4.7. From our theorem above, we have 3 different types of renormalisation

depending on the way small filled Julia sets intersect. A renormalisation of f is crossed

if it is of α type and simple if it is of β or disjoint type. We will also call the β type
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renormalisation satellite and the disjoint type primitive.

From now on, we shall disregard the possibility that a renormalisation can be crossed

and say that a quadratic-like map is renormalisable when it is simply renormalisable,

unless otherwise stated.

Proposition 4.11. If f is an n-renormalisable quadratic map, the small filled Julia set

Kn does not contain the β fixed point of f .

Proof. Suppose for a contradiction that β ∈ Kn, then from Lemma 3.21, Kn must

contain −α. Then, each little filled Julia set f i(Kn) contains α and β. This contradicts

Theorem 4.10.

Definition 4.8. Let f be a quadratic map. A positive integer n > 1 is a renormalisation

level of f if f is n-renormalisable. The set of renormalisation levels is denoted by R(f).

The first renormalisation level of f is the minimum value of R(f), if non-empty. A

quadratic map f is infinitely renormalisable if R(f) is infinite.

Proposition 4.12. Let f be a quadratic map f(z) = z2 + c. For any m,n ∈ R(f), if

m < n, then m divides n and Km ⊂ Kn.

Proof. Take renormalisation representatives fm : Um → Vm and fn : Un → Vn. Suppose

l = lcm(m,n), then for j ∈ {m,n}, define the sets Ũj and Ṽj by

Ũj :=

l/j−1⋃
i=1

f−ij(Uj), Ṽj := f l(Ũj)

We then have polynomial-like maps f l : Ũj → Ṽj for j ∈ {m,n}. By the connectedness

principle, Km ∩Kn must be connected. By Theorem 4.5, the intersection of f l : Ũm →
Ṽm and f l : Ũn → Ṽn is a polynomial-like map f l : Ul → Vl with filled Julia set

Kl := Km ∩Kn. This map is in fact quadratic-like since f l only has one critical point

0 on Kl.

If m divides n, then l = n and in particular we have that Km ⊂ Kn. Supppose

m does not divide n, then let h = hcf(m,n). Km meets Kn(h) since am + bn = h for

some integers a, b. Meanwhile, Kn(h) meets Km(h) since Km clearly meets Kn. The

set L := Km ∪ Kn(h) ∪ Km(h) is connected due to the connectedness principle. As

Kn(h) ∩Kn is either empty or a singleton, we have L ∩Kn =
(
Km ∪Km(h)

)
∩Kn and

since this intersection is connected, then Km ∩Km(h) ∩Kn must be non-empty. Thus,

the β-fixed point of fm : Um → Vm is in Kl = Km ∩ Kn, which is a contradiction to

Proposition 4.11.

Proposition 4.13. Suppose f is an m-renormalisable. Then, any m-renormalisation

of f is n-renormalisable if and only if f is mn-renormalisable.
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Proof. Suppose fm : Um → Vm is a renormalisation of f . If it has an n-renormalisation

fmn : Umn → Vmn, then fmn is obviously an mn-renormalisation of f .

Conversely, let f is mn-renormalisable. From Proposition 4.12, Kmn ∩Km = Kmn.

By Theorem 4.5, the intersection of the polynomial-like map fmn : f−m(n−1)(Um)→ Vm

and some mn-renormalisation fmn : Umn → Vmn is a quadratic-like map fmn : U →
fmn(U) with connected filled Julia set Kmn. This is in fact an n-renormalisation of

fm.

Proposition 4.14. Let f be an n-renormalisable quadratic map. Any non-repelling

periodic cycle of f has a period divisible by n.

Proof. Let w be a non-repelling periodic point of period p and let fn : Un → Vn be the

renormalisation of f with period n. If w is attracting, parabolic or Cremer, w is a limit

point of the critical orbit, hence contained in P (f). As w is not repelling, w ∈ Kn(i) for

some unique i.

Suppose w is a Siegel point, then by Proposition 3.8, the boundary of the

corresponding Siegel disk W is contained in P (f) and thus in ∪ni=1Kn(i). fp is an

irrational rotation in W , therefore W is a connected component of the interior of Kn(i)

for some unique i.

In any of the cases mentioned, as fp(w) = w ∈ Kn(i), p must be divisible by n.

From the proposition, we can tell from the periodic cycles whether a quadratic map

is non-renormalisable, renormalisable, or infinitely renormalisable.

Corollary 4.15. Let f be a quadratic map with connected filled Julia set K(f). Then,

(A) if f has a non-repelling fixed point, f is non-renormalisable;

(B) if f has a non-repelling cycle, f is at most finitely renormalisable;

(C) if f infinitely renormalisable, f has no non-repelling cycles and thus its filled Julia

set K(f) has empty interior, i.e. K(f) = J(f).

Example 4.3. The quadratic map f1/4 has a parabolic fixed point at z = 1/2. Thus,

f1/4 cannot be renormalisable.

The following is a theorem by McMullen. Details of the proof can be found in

[McM94a, §7.2.].

Theorem 4.16 (High Periods). Let f be an infinitely renormalisable quadratic map.

For every p > 1, there are at most finitely many renormalisation levels n ∈ R(f) such

that the small filled Julia set Kn contains a periodic point of period p.

Corollary 4.17. Let f be an infinitely renormalisable quadratic map. Them, the set

Of :=
⋂
n∈R(f)

⋃n
i=1Kn(i) and the postcritical set P (f) do not contain any periodic

point.
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Proof. Let x be a periodic point of f of some period p. By Theorem 4.16, there are

only finitely many n in R(f) such that w ∈ Kn(in) for some in ≤ n. As such, x is not

in
⋃n
i=1Kn(i) for sufficiently large n. Hence, x /∈ Of . Moreover, as P (f) ⊂ Of , x does

not lie in P (f) either.

Example 4.4. If f is a postcritically finite quadratic map, the critical point is either

periodic or pre-periodic (Misiurewicz). Thus, f is at most finitely renormalisable.

Example 4.5. Suppose a quadratic map fc has a superattracting periodic point at 0

of period p > 1. Let D0 be the connected component containing 0 of the Fatou set of

fc. On D0, the Böttcher map is a conformal conjugation between fc and the doubling

f0 : D → D, z 7→ z2, so the set of preimages S = {z ∈ D0 | fkc (z) = 0 for some 1 ≤ k ≤
p− 1} is finite and disjoint from D0.

Let U be a 0-symmetric open neighbourhood of D0. We can pick U such that

U b V := fpc (U). Moreover, we can assume that U is disjoint from S so that for each

1 ≤ k ≤ p− 1, 0 /∈ fkc (U) and fc : fkc (U)→ fk+1
c (U) is univalent. As such, fpc : U → V

is a quadratic-like map with connected filled Julia set D0.

Removing a point from a closed disk D0 will not change its connectivity. Thus,

fpc : U → V is a p-renormalisation of fc and it is hybrid conjugate to f0(z) = z2.

Conversely, we can also prove that if a quadratic map fc has a renormalisation which is

hybrid conjugate to the doubling map, then c must be a non-zero superstable parameter.

4.3 Baby Mandelbrot Sets

One of the most prominent applications of renormalisation theory is that it explains

the presence of little copies of the Mandelbrot set M in itself. A non-empty proper subset

M of the Mandelbrot set M is a baby Mandelbrot set if M is homeomorphic to M. The

following theorem by Douady-Hubbard [DH85] explains two types of baby Mandelbrot

sets.

Theorem 4.18. Suppose for some c ∈M that fc is n-renormalisable. Then:

(A) there is a proper subset M ⊂ M called a baby Mandelbrot set containing c and a

homeomorphism σ : M → M where for any c̃ ∈ M , fσ(c̃) is the straightening of

any n-renormalisation of fc̃;

(B) if n is the first renormalisation level, then M is maximal, i.e. not contained in

any other baby Mandelbrot set.

Note that the homeomorphism σ is well-defined since the straightening of a

quadratic-like map f is independent of its domains.
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Figure 4.2: Primitive and satellite baby Mandelbrot sets
are shown in brown and yellow respectively. Both copies are maximal.

If the first renormalisation of fc is satellite, the subset M will intersect with the

boundary of the main cardioid at a parabolic parameter, which is non-renormalisable.

Thus the composition of the straightening and the renormalisation is only well-

defined onto M\{1/4}. However, we can ignore this problem as we can extend the

homeomorphism to its closure.

Definition 4.9. The corresponding homeomorphism σ : M →M of a baby Mandelbrot

set M is called the stretching homeomorphism of M .

Recall that each hyperbolic component of int(M) aside from the main cardioid

contains a unique superstable centre c of some period n > 1, which is n-renormalisable.

From Example 4.5, this renormalisation is hybrid conjugate to the doubling map f0. As

such, we have the following result.

Corollary 4.19. Each hyperbolic component H of the interior of M aside from the main

cardioid H0 is contained in a baby Mandelbrot set M . Furthermore, M is unique if the

stretching homeomorphism σ of M maps H to H0 and the superstable centre of H to 0.

As each hyperbolic component has a unique superstable centre, we have a natural

bijection between the set of non-zero superstable parameters c and the set of all baby

Mandelbrot sets. We call cmaximal if its corresponding baby Mandelbrot set is maximal.

Consider a baby Mandelbrot set M ⊂ M which intersects the real axis R. Both M

and M are symmetric about R and indeed, the homeomorphism σ : M → M restricts

to a homeomorphism I → [−2, 1
4 ], where I = M ∩ R ⊂ [−2, 1

4 ]. Consequently, σ must
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have a fixed point c0 ∈ I. (c0 is in fact unique, but we will not prove it here. This

is Lyubich’s self similarity theorem in [Lyu99].) We thus know for sure that c0 is a

parameter corresponding to an infinitely renormalisable quadratic map.

Definition 4.10. Let f = fc be an infinitely renormalisable quadratic map with

renormalisation levelsR(f) = {nk}k∈N labelled in ascending order. The tuning invariant

τ(f) of f is an infinite tuple of maximal superstable parameters 〈c1, c2, . . .〉 such that for

each k ∈ N, if fc̃k is the straightening of the nk-renormalisation of f , then parameters

c̃k and ck lie in the same maximal baby Mandelbrot set. The map f has bounded

combinatorics if the tuning invariant consists of only finitely many distinct parameters.

Example 4.6. The Feigenbaum map fcF (z) = z2 + cF where cF ≈ −1.4011551890 is

a real infinitely renormalisable quadratic map characterised as the unique limit of the

real period-doubling cascade. In particular, the Feigenbaum parameter cF is a fixed

point of the homeomorphism σ : M → M where M is the maximal baby Mandelbrot

set containing cF . It has stationary combinatorics and it is the unique quadratic map

determined by the tuning invariant τ(fcF ) = 〈−1,−1,−1, . . .〉.

Figure 4.3: The Julia set of the Feigenbaum map fcF .
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Chapter 5

Yoccoz Puzzles

This chapter aims to obtain a requirement for f to be renormalisable and an

algorithm to construct renormalisation domains. This is done through a powerful tool

called puzzles introduced by Yoccoz for quadratic polynomials ([Hub93] and [Mil00]),

and Branner and Hubbard for cubic polynomials ([BH92]).

5.1 Yoccoz Puzzles

We know from Corollary 4.15 that a quadratic map with connected filled Julia set

are non-renormalisable when it has a non-repelling fixed point. Assume from now on

that f = fc is a quadratic map with both fixed points repelling, and that the dividing

repelling fixed point α of f does not lie on the critical orbit O+
f (0) = {ci | i ≥ 0} where

ci := f i(0). The point α is a landing point of r > 1 external rays Ri(α), i = 1, 2 . . . r.

Pick any real number t > 1 and let Et be the equipotential of K(f) of radius t.

The puzzle pieces of depth 0 of f are the closed regions P0(ci), i = 1, 2, . . . r whose

interiors are pairwise disjoint bounded components of the complement of Et∪
⋃r
i=1Ri(α)

in C. The pieces are labelled accordingly such that ci := f i(0) ∈ P0(ci).

The puzzle pieces of depth 1 of f is the collection of components of f−1(P0(ci)) for

all i = 0, 1 . . . r. These are 2r−1 components bounded by the equipotential E√t and the

external rays landing at α and the preimage −α. Inductively, we can define the puzzle

pieces of depth d+1 of f as the collection of closed components of f−1(Pd) for all puzzle

pieces Pd of depth d.

Definition 5.1. For any d ∈ N and z ∈ K(f)\O−f (α), we denote by Pd(z) the puzzle

piece of depth d containing z. Specifically, we say that Pd(0) is the critical puzzle piece

of depth d, and Pd(c) is the valuable puzzle piece of depth d.

Proposition 5.1 (Markov Property). For any puzzle pieces P and P ′ of depths d and

d′ with d ≤ d′, then either P and P ′ have disjoint interiors or P ′ ⊂ P .
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Figure 5.1: Puzzle pieces of depths 0, 1 and 2.

Proposition 5.2. For any puzzle piece P , K(f) ∩ P is connected.

Proof. For any puzzle piece P0 of depth 0, P0 ∪K(f) is connected as it is the union of

{α} and a connected component of K(f)\{α}. To prove this for deeper pieces, we will

proceed by induction.

Assume that the lemma holds for puzzle pieces of depth d−1 for some positive d ∈ N.

For any noncritical puzzle piece Pd, we have a univalent restriction f : Pd → Pd−1 for

some puzzle piece Pd−1 of depth d − 1. We can restrict further to a homeomorphism

f : Pd ∩ K(f) → Pd−1 ∩ K(f), so Pd ∩ K(f) must be connected. For the critical

piece Pd(0), assume for a contradiction that Pd(0) ∩ K(f) is not connected and take

a component L not containing 0. Then, by connectedness of Pd−1(c), there must be a

point on f(L) such that every open neighbourhood intersects with K(f)∩Pd1(c)\f(L).

Lifting each neighbourhood back via f gives a contradiction to the assumption that L

and Pd(0) ∩K(f)\L are disjoint components. Thus, Pd(0) ∩K(f) is connected.

Definition 5.2. The critical tableau of f is the collection of puzzle pieces {Pd(ck)}d,k∈N.

We say that the critical tableau is periodic of period n if n > 1 is the least positive integer

where for all depths d, Pd(cn) = Pd(0).

Theorem 5.3. Let f(z) = z2 + c be a quadratic map with both fixed points repelling

and connected K(f). If the critical orbit does not contain the α fixed point, then f is

renormalisable if and only if the critical tableau of f is periodic. Moreover, the period

of the critical tableau is the first renormalisation level of f .

Proof. Suppose that the critical tableau of f is periodic of period n. For sufficiently

large d, the first return time of 0 back to Pd(0) is n, so then fn : Pd+n(0)→ Pd(0) is a

proper double covering map. When necessary, we can thicken Pd+n(0) and Pd(0) in the

following way.

Replace each external ray Rθ on ∂Pd(0), with a nearby ray outside Pd(0) which
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differs in angle by a sufficiently small ε > 0. Moreover, for each preimage of α on

∂Pd(0) ∩ ∂Pd+n(0), take a small circle of sufficiently small radius δ > 0 centred at this

point. Denote by P̂d(0) the thickened simply connected region bounded by the union

of these new rays, circles, and the same equipotential on ∂Pd(0). Let P̂d+n(0) be the

connected component of f−n
(
P̂d(0)

)
containing Pd+n(0). Then, it follows from the

expanding nature of the doubling map that P̂d+n(0) b P̂d(0) and fn : P̂d+n(0)→ P̂d(0)

is a quadratic-like map, and it has a connected Julia set due to periodicity of the critical

tableau.

Suppose two small filled Julia sets Kn(i) and Kn(j) meet, then the intersection must

consist of a repelling fixed point of fn, and by our puzzle construction, this is a preimage

of α. Thus, Kn(i) ∩ Kn(j) = {α}, and since α is the fixed point of f , all small filled

Julia sets intersect each other at α. The point α is then located on the boundary of

the piece Pd+n(0) so α cannot divide Kn. The iterate fn : P̂d+n(0)→ P̂d(0) is indeed a

n-renormalisation of f .

Suppose now that f is m-renormalisable. If α /∈ Km, then 0 ∈ Km ⊂ P0(0).

Otherwise, α is the β-fixed point of fm since α is in all the small filled Julia sets. Hence,

Km ⊂ P0(0).

If Km ⊂ Pjm(0), then pull Km back via fm to a component of f−m(Km) containing

Km, so then Km ⊂ f−m(Km) ⊂ P(j+1)m(0). By induction, Km ⊂ Pmj(0) for all j ∈ N.

As all puzzle pieces containing 0 are nested, Km ⊂ Pd(0) for all depths d. As Km is

m-periodic, the critical tableau has period ≤ m.

Yoccoz puzzles provides an algorithm to construct the first renormalisation of a

renormalisable quadratic map. We will generalise this idea in the next section.

Figure 5.2: The map f(z) = z2 − 1.333 is 2-renormalisable on the thickened
critical puzzle piece of depth 3 onto the thickened critical puzzle piece of depth 1.

This renormalisation is satellite and K2 is shown in dark blue.
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5.2 Douady-Hubbard Renormalisation

We will construct puzzle pieces using external rays generated from the rays landing

at a dividing repelling periodic cycle {αk}k=0,1,...p−1 where each point divides K(f) into

q components. We assume that the cycle we have picked does not lie in the postcritical

set P (f) of f .

Pick any t > 1 and equipotential Et of K(f). Let R(α) be the union of the cycle

{αk}k=0,1,2...p−1 and all external rays landing on them. The puzzle pieces of depth 0

induced by {αk}k=0,1,...p−1 are the closure of bounded components of C\(Et ∪ R(α)).

Again, we define inductively the puzzle pieces of depth d induced by {αk} as the

preimages of those of depth d− 1.

Similar to the case where p = 1, these puzzle pieces satisfy the Markov property.

The following lemma will help the explicit construction of renormalisation domains.

This procedure is called the DH renormalisation of f .

Lemma 5.4. There is a puzzle piece Ppq ⊂ P0(c) of depth pq such that the map fpq :

Ppq → P0(c) is a branched double covering map.

Proof. We can assume that for k = 0, 1, . . . p − 2, f(αk) = αk+1, f(αp−1) = α0 and α1

is attached to P0(c). Let L0 ⊂ R(α) be the union of the point α1 and the two external

rays attached to ∂P0(c).

Let Lk ⊂ R(α) be the unique pullback of L0 via fk for each k = 1, . . . pq − 1. The

pullback of P0(c) via f is a single component P1(0), a critical puzzle piece attached to

L1 ⊂ R(α) where f(L1) = L0. The restriction f : P1(0) → P0(c) is a branched double

covering map.

Let Ppq be the pullback of P1(0) via fpq−1 such that Ppq is attached to Lpq ≡ L0

and for each m = 1, . . . pq− 1, the puzzle piece Ppq−m := fm(Ppq) is attached to Lpq−m.

Suppose there are two nested puzzle pieces Ppq−m ⊂ Ppq−m′ for some m < m′ ≤ pq − 1,

then since Lpq−m 6= Lpq−m′ , the interior of Ppq−m′ intersects Lpq−m. Thus, P0(c) would

intersect both L0 and Lm′−m, i.e. more than 3 external rays on Lk ⊂ R(α), which is a

contradiction.

Thus, the puzzle pieces Ppq−m for m = 0, 1, . . . pq − 1 all have disjoint interiors, so

then they are all non-critical except for P1 ≡ P1(0). It follows that f : Ppq−m → Ppq−m−1

is univalent for each m ≤ pq−2, and f : P1 → P0 is a branched double covering map.

Proposition 5.5. If c is contained in the piece Ppq in the previous lemma, then fpq :

P̂pq+1(0)→ P̂1(0) is a quadratic-like map. Additionally, if ckpq ∈ Ppq+1(0) for all k ∈ N,

then fpq : P̂pq+1(0)→ P̂1(0) is a pq-renormalisation of f .

Proof. From Lemma 5.4, fpq : Ppq+1(0)→ P1(0) is also a branched double covering and

the pieces can be thickened to a quadratic-like map, similar to the first part of the proof

of Theorem 5.3. The second assumption ensures that K(fpq) is connected.
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Definition 5.3. The map f is DH-renormalisable if it satisfies the criterion in

Proposition 5.5. Also, f is said to be immediately renormalisable if a DH-renormalisation

can be constructed with a dividing repelling fixed point, i.e. the case where p = 1.

From the proof of Theorem 5.3, the small filled Julia sets of an immediate

renormalisation touch at the fixed point α. This then leads to the following.

Proposition 5.6. Any immediate renormalisation of f is of satellite type.

It is natural to ask whether any satellite renormalisation can be obtained through the

Douady-Hubbard procedure. To tackle this question, we need to introduce the principal

nest.

5.3 Principal Nest

Consider the puzzle pieces constructed from a repelling fixed point α having q > 1

landing rays. This section aims to analyse the role of the critical puzzle pieces. Following

Lyubich’s notation, we will first expand our vocabulary further.

Definition 5.4. A critical puzzle piece Pd(0) where d > 0 is protected if it is compactly

contained in the previous piece Pd−1(0).

Lemma 5.7. Let f be a quadratic map with both fixed points repelling. If f is not

immediately renormalisable, then the shallowest protected critical puzzle piece W0 is the

piece Pkq+1(0), where k is the smallest positive integer such that ckq /∈ P1(0).

Proof. As f is not immediately renormalisable, then such a k exists due to Proposition

5.5. As P1(ckq) b P0(0), then Pkq+1(0) b Pkq(0), i.e. Pkq+1(0) is protected. We claim

that α is attached to each critical puzzle piece Pl(0) for all l ≤ kq.
As −α ∈ P0(0), then for m ≤ q, the preimages f−m−1(α) are disjoint from the

interior of P1(0), thus α must be attached to Pm(0). As clq ∈ P1(0) for all l < q, then

f q(Pr+q(0)) = Pr(0) for all r < kq. We will use this to prove the inductive step.

Suppose for some m ≤ kq we have that for all l < m, Pl(0) is not compactly contained

in Pl−1(0). Then, Pm(0) is not compactly contained in Pm−1(0) too since otherwise we

have a contradiction:

Pm−q(0) = f q(Pm(0)) b f q(Pm−1(0)) = Pm−q−1(0).

Thus, Pm(0) are unprotected for all m ≤ kq.

Suppose k0 > 0 is the first number such that ck0 = fk0(0) ∈ int(W0). Let W1 be

the critical puzzle piece which is the pullback of W0 via fk0 . Then, define k1 > 0 as the

first number such that ck1 ∈ int(W1), and let W2 be the critical pullback of W1 via fk1 .
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Repeat the procedure to obtain sequences of positive integers {kl} and critical puzzle

pieces {Wl}.

Definition 5.5. For i ∈ N, the critical piece Wi is principal of level i. The principal

nest is the sequence W0 bW1 bW2 b. . .. We call f combinatorially recurrent if the

critical orbit visits all critical puzzle pieces, non-recurrent if otherwise, i.e. the critical

orbit eventually never returns to some sufficiently deep critical piece.

Using our new vocabulary, we see that f is combinatorially recurrent if and only if

its principal nest is infinite. Observe that for each level l ≥ 1, the principal first return

map gl := fkl : Wl →Wl−1 is a quadratic-like map.

Definition 5.6. The return of 0 to Wl is central when gl+1(0) ∈ Wl+1. We say that

a finite sequence Wl b. . . bWl+N−1 is a central cascade of length N if the return of 0

to Wl+j is central for j = 0, 1, . . . N − 2. A central cascade is maximal if it cannot be

extended to a longer central cascade.

Remark. When a principal nest ends up with an infinite central cascade starting from

level l, then for any j > l, the return time kj coincides with kl+1 and the principal first

return map gj coincides with the restriction gl+1|Wj .

Theorem 5.8. Let f be a quadratic map with connected filled Julia set and both fixed

points repelling. Then, exactly one of the following three cases occur:

(A) f is non-renormalisable,

(B) f is immediately renormalisable,

(C) f is primitively renormalisable.

Moreover, case (C) occurs if and only if f is combinatorially recurrent with an infinite

central cascade starting from l − 1 for some l. In this case, gl : Wl → Wl−1 is a

kl-renormalisation of f .

Proof. Suppose f is not immediately renormalisable and the principal nest of f is finite

or does not end with an infinite central cascade. Then, the critical tableau is not periodic

and by Theorem 5.3, this leads to case (A).

Suppose for some n that f has a primitive renormalisation fn : Un → Vn with small

filled Julia set Kn. As the repelling fixed point α does not lie in Kn, then by complete

invariance Kn cannot contain all preimages of α too. Thus, Kn is contained in all

principal puzzle pieces Wl. It then follows that the sequence of first return times kl is

non-decreasing and bounded by n, hence it is eventually constant. We then obtain an

infinite central cascade.

Suppose f has an infinite central cascade starting from l−1 for some l. The principal

return map gl : Wl →Wl−1 is a quadratic-like map. The filled Julia set of gl is connected

because centrality ensures that the critical orbit under gl never escapes. Moreover, the
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sets f j(Wl) for j = 0, 1, . . . kl−1 are pairwise disjoint since otherwise if f i(Wl) intersects

f j(Wl), then Wl would intersect the boundary of fs(Wl) for some s < kl, contradicting

the fact that Wl is protected. Thus, gl is a primitive renormalisation of f , and by

Theorem 5.3, the renormalisation period coincides with the period of the critical tableau,

which is kl.

Corollary 5.9. Any first renormalisation of a quadratic-like map is a DH renormali-

sation.

Proof. From the theorem above, any satellite renormalisation of f is in fact an immediate

renormalisation. For the primitive case, we need to choose the appropriate repelling

periodic point α such that the induced DH renormalisation corresponds with the

primitive renormalisation gl : Wl → Wl−1 in the previous theorem. The proof (refer

to [Lyu19]) will not be discussed here as it requires technical construction of a periodic

ray landing at α.

We see that the principal nest provide us with an algorithm to determine whether

or not a quadratic map is renormalisable and, if so, the type of renormalisation together

with the explicit renormalisation domains. However, the principal nest does not give any

information on the second or subsequent renormalisations, although they can generally

be obtained through the Douady-Hubbard procedure using a smart choice of dividing

repelling cycle.

Figure 5.3: The quadratic map f(z) = z2 − 1.755 is 3-renormalisable on the critical
puzzle piece of depth 4 onto the critical puzzle piece of depth 1. This renormalisation

is primitive and K3 is the middle disk shown in dark blue.
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5.4 Local Connectivity of Julia Sets

Lyubich proved in [Lyu97] that the annular moduli induced by non-central principal

pieces grow linearly.

Theorem 5.10. Let f : U → V be a quadratic-like map with connected Julia set

satisfying mod(V \U) ≥ µ > 0. Let the escaping time of 0 from W0 ∪
⋃q−1
i=1 P0(ci)

be less than N , then there is a constant C depending only on µ and N such that if the

increasing sequence of non-central return levels is denoted by {ln}, then

mod(Wln+1\Wln+2) ≥ Cn

Yoccoz puzzles are of great importance in helping us prove local connectivity of

quadratic Julia sets.

Lemma 5.11. Let f be a quadratic map with connected Julia set and both fixed points

repelling. Suppose the forward orbit of a point z0 ∈ K(f) is disjoint from some critical

puzzle piece Pd(0), then the puzzle pieces containing z0 shrink to a point, i.e.
⋂
Pj(z0) =

{z0}, and thus K(f) is locally connected at z0.

Proof. This is a straightforward adaptation of Lemma 4 on Milnor’s [Mil00]. Assume

that the forward orbit of z0 never reaches some thickened critical puzzle piece P̂d(0).

Label all non-valuable thickened pieces of depth d − 1 as P̂ kd−1, where k = 1 . . .m for

some m ∈ N, and endow them with the usual hyperbolic metric. The pullback of P̂ kd−1

via a branch of f−1 is some thickened piece Pd of depth d compactly contained in P̂ ld−1

for some l, so then by Schwarz-Pick lemma, f−1 is a contraction.

Suppose that all branches of f−1 over all non-critical P̂ kd−1 have contraction factor

bounded above by λ < 1 and let D be the maximum hyperbolic diameter over all

thickened pieces P̂d such that f(P̂d) = P̂ kd−1 for some k. The point z0 lies in P̂Kd−1 for

some K, then the hyperbolic diameter of puzzle pieces around z0 satisfies

diamPd+n(z0) ≤ λnD.

Taking n → ∞, then the puzzle pieces around z0 shrink to {z0}. Given any small

neighbourhood U of z0, there is always some puzzle piece PN (z0). By Proposition 5.2,

we obtain local connectivity at z0.

Theorem 5.12 (Yoccoz). Any non-renormalisable quadratic-like map f with connected

Julia set and both fixed points repelling has locally connected Julia set.

Proof. Suppose f is non-renormalisable. We will split the proof into two cases. Suppose

f is combinatorially recurrent, then the principal nest has infinitely many non-central

levels. Using Grötzsch inequality and Theorem 5.10, it is clear that the Pd(0) ∩K(f)

shrinks to the singleton {0}, thus J(f) is locally connected at 0. If f is combinatorially
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non-recurrent, then the orbit of fm(0) for some m > 0 never reaches sufficiently deep

criticap puzzle pieces. By Lemma 5.11, we have local connectivity of J(f) at fm(0),

and thus at 0.

We can in fact spread this information by Koebe distortion to the whole critical

grand orbit. Let’s pick some z0 ∈ J(f). Suppose the forward orbit of z0 must be

disjoint from some critical puzzle piece Pd(0), then from Lemma 5.11, J(f) is locally

connected at z0. If otherwise, then the forward orbit intersects
⋂
d∈N Pd(0)∩K(f) which

is the singleton {0}, so z0 lies in the critical grand orbit anyway.

The following is the full theorem by Yoccoz. Details of the proof (refer to [Hub93])

will not be discussed here. The main technique used in Yoccoz’s theorem is an analogue

of puzzles, called parapuzzles, on the parameter plane.

Theorem 5.13 (Yoccoz). Let f = fc be an at most finitely renormalisable quadratic

map with no non-repelling periodic cycles.

(A) Any infinite nest of puzzle pieces always shrink to a point and in particular J(f)

is locally connected,

(B) The parameter c lies in ∂M and M is locally connected at c.

Remark. The MLC statement in (B) above can be extended to all finitely renormalisable

maps. If the map fc has an attracting cycle, c lies in a hyperbolic component and local

connectivity is trivial. The case where fc has an indifferent cycle is non-trivial and is

discussed in [Hub93] as well.

Yoccoz’s theorem was one of the first major breakthrough to the MLC at the

time. It reduces the problem to parameters which are infinitely renormalisable. Infinite

renormalisation will be the central theme of the next chapter.
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Chapter 6

Renormalisation Fixed point

6.1 The Space of Quadratic-Like Germs

Recall that the set of closed subsets of C is a metric space with respect to the

Hausdorff metric dH defined by

dH(A,B) := inf{ε ≥ 0 |A ⊆ Bε and B ⊆ Aε},

where Bε := {x ∈ C | dist(x,B) < ε} denotes the ε-neighbourhood of B, and the same

goes to Aε. The set of all open subsets of C is also a metric space with Hausdorff metric

defined by

dH(A,B) := dH(C\A,C\B).

Denote the set of all quadratic-like maps with connected filled Julia set as QL.

This set is equipped with Carathéodory topology defined by saying that a sequence of

quadratic-like maps fn : Un → Vn converges to f : U → V if and only if Un → U in the

Hausdorff topology and fn → f uniformly on compact subsets of U .

Let Q := {fc | c ∈M} be the space of quadratic maps with connected filled Julia set

up to affine conjugacy. This space is endowed with the usual compact-open topology.

The straightening operator χ : QL → Q sends each quadratic-like map f to the unique

quadratic map fc representing its hybrid class. Hybrid conjugacy gives rise to foliations

in QL where each c ∈M defines a unique leaf QLc = χ−1(fc).

Lemma 6.1. The straightening operator χ : QL → Q is a continuous surjection.

The need to adjust the domain for a quadratic-like map poses many unnecessary

problems. We will consider the germs of quadratic-like maps up to affine conjugacy by

introducing an equivalence relation ∼ on QL where f ∼ g if and only if f and g are

affine conjugate around some neighbourhoods of their filled Julia sets.

Definition 6.1. Each equivalence class [f ] is called a quadratic-like germ and its space

is denoted by G = QL/ ∼.
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Any quadratic-like germ [f ] has a normalised representative f such that the β-fixed

point is 1. By Proposition 4.5, all normalised quadratic-like representatives of a germ

have the same filled Julia set K(f). Thus, each quadratic-like germ [f ] has a well-defined

filled Julia set K(f) which is 0-symmetric and has β-fixed point 1.

If a quadratic-like map f is real, i.e. commutes with z → z, then it is not difficult to

show that K(f) is symmetric about the real axis; if f is normalised, K(f)∩R = [−1, 1].

This will then restrict to a unimodal map f : [−1, 1]→ [−1, 1] with critical point at 0.

We define a topology on the space of germs G by saying that [fn] → [f ] if and

only if there are representatives fn : Un → Vn in QL converging to f : U → V in the

Carathéodory topology.

Since χ(f) = χ(g) whenever f ∼ g in QL, we also have leaves Gc = QLc/ ∼
representing hybrid classes in the germ level. Moreover, we can adapt Lemma 6.1 to the

topology on G.

Lemma 6.2. The straightening operator χ : G → Q is a continuous surjection.

6.2 A Priori Bounds

This section is focused on a crucial precompactness property called a priori bounds.

The following is a theorem by McMullen.

Theorem 6.3. For any µ > 0, the space QL(µ) := {f : U → V ∈ QL|mod(V \U) ≥ µ}
is precompact up to affine conjugacy.

Corollary 6.4. For any µ > 0, the space G(µ) = {[f ] ∈ G | f ∈ QL(µ)} is precompact.

Proposition 6.5. Let f : U → V be a quadratic-like map in QL(µ). There exist

topological disks U ′ ⊂ U and V ′ ⊂ V with smooth boundaries and constants mµ, dµ, Cµ,

Dµ and Eµ depending only on µ such that we have the following:

(A) f : V ′ → U ′ is a quadratic-like map in QL(mµ);

(B) U ′ and V ′ are Cµ quasidisks with eccentricity bounded by Eµ about 0;

(C) f can be expressed as a composition h ◦ f0, where h : f0(U ′) → V ′ is a

biholomorphism with distortion bounded by a constant dµ;

(D) f : U ′ → V ′ can be straightened by a hybrid conjugation ψ : C → C of

quasiconformal dilatation Dµ.

Proof. The first part is merely a modification of Lemma 4.1. Let g : D → V be a

Riemann map with g(0) = 0. From Lemma 2.17, there is some rµ ∈ (0, 1) such that

g−1(U) ⊂ Drµ . Then, we can define the subset V ′ ⊂ V as the topological disk containing

U with boundary ∂V ′ = g(T√rµ), and U ′ ⊂ U as the preimage of V ′ under f . By
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Grötzsch inequality,

mod(V ′\U ′) = mod
(
D√rµ\g−1(U ′)

)
≥ mod(Arµ,√rµ).

Thus, (A) holds immediately with mµ := mod(Arµ,√rµ).

Notice that ∂V ′ and ∂U ′ are the core curves of V \g(Drµ) and U\f−1g(Drµ). By

Propositions 2.21 and 2.23, we have (B).

The composition f = h ◦ f0 follows from 0-symmetry. Applying Koebe distortion

theorem, g and h−1 ◦ g have bounded distortion on V ′ depending on
√
rµ, so then h will

have distortion bounded by some dµ. (C) holds.

In the proof of Theorem 4.3, the dilatation of the hybrid conjugation ultimately

depends on the dilatation of the tubing φ : V ′\U ′ → Ar,r2 for some r > 1, so we will

focus on the construction of φ.

Define a map φ : ∂V ′ → Tr2 , z 7→ r2√
rµ
g−1(z). By Koebe distortion, φ and φ−1 have

bounded derivatives depending only on µ. Thus, it is bi-Lipschitz and consequently

D′µ-quasisymmetric.

The map f : ∂U ′ → ∂V ′ has a bounded distortion, hence it is Lipschitz. It then

follows that φ lifts to a D′′µ-quasisymmetric homeomorphism satisfying φ ◦ f = f0 ◦φ on

∂U ′. By interpolation in Corollary 2.13, we have a quasiconformal homeomorphism φ :

V ′\U ′ → Ar,r2 with dilatation depending on D′µ and D′′µ - both of which depend only on

µ. This tubing φ thus gives us a Dµ-quasiconformal hybrid conjugation ψ : V ′ → ψ(V ′).

To extend the domain to the whole C, it is sufficient to extend φ outside V ′. As

V ′ is a quasidisk, we have some quasiconformal homeomorphisms e1 and e2 on Ĉ where

e1(V ′) = e2(Dr2) = D. Then, since e2 ◦ φ ◦ e−1
1 is quasisymmetric on the unit circle T,

we can do partial interpolation to obtain a quasiconformal homeomorphism from Ĉ\D
to itself. Lift this extension to a quasiconformal map φ : Ĉ\V ′ → Ĉ\Dr2 with dilatation

depending only on µ. Thus, (D) holds.

Definition 6.2. An infinitely renormalisable quadratic-like map f : U → V is said to

have a priori bounds when there is a constant µ > 0 such that for each renormalisation

level n of f , there is a renormalisation representative fn : Un → Vn in QL(µ).

Precompactness ensures that the sequence of renormalisations {fn}n∈R(f) of any

infinitely renormalisable quadratic-like map f with a priori bounds has a limit point.

This property has been the central assumption in many results on fixed points of the

renormalisation operator. Before delving into renormalisation fixed point, we state some

properties which come with a priori bounds.

For an infinitely renormalisable quadratic map f , we will denote by Of the set of

points contained in some little Julia sets of all renormalisation levels, i.e.

Of :=
⋂

n∈R(f)

n⋃
i=1

Kn(i).
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Lemma 6.6. Let f : U → V be an infinitely renormalisable quadratic-like map. The

following are equivalent:

(A) supi≤n diamKn(i)→ 0 as n increases in R(f);

(B) Of is a Cantor set.

Proof. Label the elements of R(f) as an increasing sequence n1 < n2 < n3 < . . .. Define

another sequence of positive integers {mi}i∈N by setting m1 := n1 and mi := ni
ni−1

for

i ≥ 2. Define Di = {0, 1, . . . ,mi − 1}, a finite set endowed with discrete topology. The

infinite product C =
∏∞
i=1Di equipped with the product topology is metrisable by the

metric d
(
(x1, x2, . . .), (y1, y2, . . .)

)
:=
∑∞

i=1 2−i|xi−yi|. Then, C is non-empty, compact,

perfect, totally disconnected, and metrisable, hence, a Cantor set.

Suppose (A) holds. Any sequence b = (b1, b2, . . .) ∈ C naturally induces a unique

sequence a = (a1, a2, . . .) such that Kn1(a1) ⊃ Kn2(a2) ⊃ Kn3(a3) ⊃ . . . by setting

a1 := b1 and ai+1 = ai + bi+1ni, and letting Kni(0) = Kni(ni) and for convenience.

As such, we can define an injection Φ : C → Of where Φ(b) is the unique point in⋂
i∈NKn(ai).

The map Φ is a bijection since any point w ∈ Of induces a unique sequence

(a1, a2, . . .) satisfying w ∈ Kni(ai) for each i, and consequently a unique sequence

(b1, b2, . . .) satisfying b1 = a1 and bi = ai−ai−1

ni−1
. The basis topology of C is generated by

cylinder sets of the form

I(b1,...,bk) = {(x1, x2, . . .) ∈ C | xi = bi for i ≤ k}

and Φ(I(b1,...,bk)) = Knk(ak) ∩ Of , where ak is determined from the same recurrence

relation as above. Each Knk(ak) ∩ Of is compact and it must be disjoint from its

complement Of\Knk(ak), since otherwise it will intersect at a repelling periodic point

and contradict Corollary 4.17. Hence, it is an open subset of Of . As Φ−1 is a continuous

bijection, Of is compact, and C is Hausdorff, Φ is indeed a homeomorphism, so (B)

holds.

Conversely, assume (B) instead. By Corollary 4.17, each Kni(m) ∩ Of is an open

subset of Of disjoint from Kn(j) for j 6= m. Thus, connected components of Of are of

the form
⋂
n∈R(f)Kni(ai) which are singletons due to total disconnectivity. Hence, (A)

holds.

Theorem 6.7. If f : U → V be an infinitely renormalisable quadratic-like map with a

priori bounds, then any decreasing nest of filled Julia sets {Jn(an)}n∈R(f) shrinks to a

point, i.e. diamJn(an)→ 0 as n increases in R(f). Moreover, P (f) is a Cantor set.

Proof. There is some µ > 0 such that for each renormalisation level n ∈ R(f), we have

a renormalisation fn : Un → Vn of f in QL(µ). We can assume by Proposition 6.5 that

each Un and Vn have bounded eccentricity about 0 depending on µ.

Suppose there is an open neighbourhood W of 0 in
⋂
n∈R(f) Un, then J(f) ⊂ fN (W )

for sufficiently large N ∈ N. But since fN (W ) ⊂ VN , there is a contradiction. Hence,
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the inner radius of Un about 0 must converge to 0 as n→∞ in R(f).

By bounded eccentricity of Un, diamKn ≤ diamUn → 0. Consider any arbitrary

decreasing nest of small filled Julia sets Kn(an). The same argument as above

would apply to the inner radius of Un(an) about a point in
⋂
n∈R(f) Pn(an) (Cantor’s

intersection theorem guarantees the existence of this point as each Pn(an) is compact).

Thus, any decreasing nest Kn(an) and Pn(an) shrinks to a point. In particular,

P (f) = Of . By Lemma 6.6, P (f) is a Cantor set.

Corollary 6.8. If f : U → V is an infinitely renormalisable quadratic-like map with a

priori bounds, then the Julia set J(f) is locally connected at 0.

Proof. Let U ⊂ C be an arbitrary open neighbourhood of 0. Let 0 ∈ Jn(an) for some

an and all n ∈ R(f), then there is sufficiently high level n such that Jn(an) ⊂ U . As

the n-renormalisation is DH, we can use appropriate puzzle pieces such that Jn(an) is

the infinite intersection of Pd(0)∩ J(f) over all d > 0, so again there is sufficiently deep

d where intPd(0) ∩ J(f), a connected neighbourhood of 0, is contained in U .

Local connectivity throughout the whole Julia set is currently still an open problem.

Hu and Jiang proved local connectivity under the additional assumption that f has

bounded combinatorics. This assumption allows the renormalisation to be unbranched,

i.e. where for all levels n, Vn ∩P (f) = Kn ∩P (f). See [Jia00] and [McM96, Chapter 8].

Theorem 6.9. Let f be an infinitely renormalisable quadratic map with bounded

combinatorics and a priori bounds, then the Julia set J(f) is locally connected.

The result turns out to be negative for some maps without the bounded combina-

torics assumption. This result is due to Douady, and Hubbard, and Sørensen (see [Sø00]

[Mil00]). Levin ([Lev11]) improved their results using weaker combinatorial assumptions.

We will only state a particular case of Levin’s result below.

Theorem 6.10. There is an infinitely renormalisable quadratic map fc with unbounded

combinatorics such that J(fc) is not locally connected, yet the Mandelbrot set M is locally

connected at c.

Typically, for a generic quadratic map fc, the absolute value of the multiplier of a

repelling periodic cycle tends to increase with the period. For instance, for the doubling

map f0, the multiplier of a repelling periodic cycle of period k has absolute value 2k.

Infinitely renormalisable maps having a priori bounds provide a counterexample to this

observation.

Theorem 6.11. Any infinitely renormalisable quadratic map f with a priori bounds

with constant µ has an infinite sequence of repelling periodic cycles with multiplier values

bounded by some λµ > 0, a constant depending only on µ.

53



Proof. Pick renormalisation representatives {fn : Un → Vn}n∈R(f) of f in QL(µ). Take

βn, the β-fixed point of fn in Kn. By Proposition 4.11, {βn}n∈R(f) is an infinite sequence

of distinct repelling periodic points of f .

Pick a level n ∈ R(f) and let β = βn. By Proposition 6.5, we can assume that

the associated hybrid conjugation h, where h ◦ fn = fc ◦ h for some unique c ∈ M,

has quasiconformal dilatation bounded by a constant Dµ ≥ 1. Let λ := fn(β) be the

multiplier of β with respect to fn and let λ′ := f ′c(h(β)) be the multiplier of h(β) with

respect to fc. By Proposition 3.14, we get an upper bound

|λ′| = 2|φ(β)| ≤ 4. (6.1)

Denote by φ the Koenigs lineariser of fn at β such that φ(β) = 0 and φ is a

conformal conjugation between fn and the linear map z 7→ λz in some neighbourhood

of β. Similarly, let ψ be the Koenigs lineariser of fc in a neighbourhood of h(β).

Figure 6.1: Koenigs linearisation and straightening.

We can pick a sufficiently small r > 0 such that φ−1 is univalent on D|λ|r and ψ is

univalent on h(φ−1(D|λ|r)). Then, h̃ = ψ◦h◦φ−1 is aDµ-quasiconformal homeomorphism

on Ar,|λ|r onto its image A = h̃(Ar,|λ|r). Then,

mod(A) ≥ 1

Dµ
mod(Ar,|λ|r) =

1

2πDµ
log(|λ|). (6.2)

The annulus A is bounded by the image of two circles under h̃, namely γ and Γ where

γ separates 0 from Γ. Let As,t be the smallest regular annulus containing A centred at

0, then it is clear that |λ′|s ≤ t. By Proposition 2.19, the closed curve Γ has bounded

eccentricity about 0, i.e. t ≤ Eµs|λ′|, where Eµ > 0 is some constant depending only on

Dµ, hence depending only on µ. As such,

mod(A) ≤ mod(As,t) =
1

2π
log
( t
s

)
≤ 1

2π
log
(
Eµ|λ′|

)
(6.3)

Combining (6.1), (6.2) and (6.3), we will obtain an upper bound: |λ| ≤ (4Eµ)Dµ .

Consequently, the absolute value of the multiplier of f at any β is bounded by

Λµ := (4Lµ)Dµ , which is independent of the renormalisation level n ∈ R(f).
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So far we have seen a number of properties of infinitely renormalisable maps having

a priori bounds, but perhaps a more fundamental question to ask ourselves is whether

or not such a map exists. This is answered rather nicely in Sullivan’s paper [Sul88].

Theorem 6.12 (Sullivan’s Complex Bounds). Any infinitely renormalisable real

quadratic map f(z) = z2 + c with bounded combinatorics has a priori bounds depending

only on the combinatorics. Moreover, f is uniquely determined by its tuning invariant.

Example 6.1. The Feigenbaum map fcF has stationary combinatorics. By Sullivan’s,

it is the unique map with tuning invariant 〈−1,−1,−1, . . .〉 and it has a priori bounds.

The fact that the postcritical set of fcF is a Cantor set is in sync with the bifurcation

diagram in our introduction.

6.3 Renormalisation Fixed Point

Let QL(p) be the set of all p-renormalisable quadratic-like maps in QL, and let

G(p) := QL(p)/ ∼. We can define the renormalisation operator Rp : G(p) → G mapping

a germ of a p-renormalisable map to the quadratic-like germ of its p-renormalisation.

This operator is well-defined as any renormalisation representative has the same filled

Julia set. If p is not specified, then it is taken to be the first renormalisation level.

In this section, we are primarily interested in the solutions of the Cvitanovic-

Feigenbaum equation:

fp(z) = af(a−1z) (6.4)

for some normalisation constant a ∈ C∗ and integer p ≥ 2. A quadratic-like germ [f ]

is a fixed point of Rp : G(p) → G if and only if f satisfies (6.4) on a neighbourhood

of its filled Julia set. To find renormalisation fixed points, we will follow McMullen’s

formulation of quadratic-like towers [McM96, Chapter 5].

Definition 6.3. Let S be a subset of Q>0 containing 1 and ordered by division. A

tower T with level set S is a sequence of quadratic-like maps {gs : Us → Vs}s∈S such

that:

(A) each gs has a critical point at 0 and connected filled Julia set K(fs);

(B) whenever s < t ∈ S, gs is t
s -renormalisable, its renormalisation is hybrid conjugate

to gt, and g
t/s
s = gt on K(gt).

A tower has a priori bounds with constant µ > 0 if for all s ∈ S, gs ∈ QL(µ). We

will denote by Tow(µ) the space of all towers with a priori bounds with constant µ. A

tower has bounded combinatorics if there is a constant B > 1 such that t
s ≤ B for any

adjacent levels s < t in the level set.
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Example 6.2. Any renormalisable quadratic map f generates a natural tower T =

{fs : Un → Vn}n∈S with level set S = R(f) ∪ {1}, where f1 = f . If f is infinitely

renormalisable, the tower can be chosen to be infinite. Furthermore, if f has a priori

bounds, then we can ensure that the tower T has a priori bounds.

Example 6.3. Let f : U → V be a normalised quadratic-like map in QL satisfying

Rp[f ] = [f ]. Equivalently, there is some a ∈ C∗ such that fp(z) = af(a−1z) for all

z ∈ K(f). Then, f induces a bi-infinite tower T = {fs}s∈S , where the level set is

S = {pn | n ∈ Z} and each map is defined by fpn : anf−p
n
(V )→ anV, z 7→ anf(a−nz).

Proposition 6.13. Let T = {fs : Un → Vn}n∈S be a tower and for some s < t ∈ S, let

U and V be components of Us ∩ Ut and V = Vs ∩ Vt containing K(ft). Then, ft = f
t/s
s

on U and ft : U → V is a t
s -renormalisation of fs.

Proof. By holomorphic continuation, the region in which ft = f
t/s
s can be extended

from a small neighbourhood of K(ft) to U , then ft : U → V is still quadratic-like by

Proposition 4.5 and it is indeed a renormalisation of fs since Kt/s(fs) = K(ft).

Definition 6.4. A conjugation between two towers T = {fs} and T ′ = {gs} having

the same level set S is a sequence of conjugations {φs} between fs and gs for

each s. The towers T and T ′ are conjugate if such a conjugacy exists, and it is

quasiconformal/conformal if the conjugacies at all levels are quasiconformal/conformal.

The following is a theorem by McMullen.

Theorem 6.14 (Rigidity of Towers). Any bi-infinite tower T ∈ Tow(µ,B) is

quasiconformally rigid, i.e. any quasiconformal conjugacy from T to another tower

is conformal.

In dealing with germs, a more useful notion would be one which does not depend on

the domains.

Definition 6.5. Two towers T = {fs} and T ′ = {gs} having the same level set S are:

• hybrid conjugate if for each level s, fs and gs are hybrid conjugate to each other,

• isomorphic if for each level s, fs and gs can be restricted to smaller neighbourhoods

of their respective filled Julia sets such that they are conformally conjugate.

Theorem 6.15. Any pair of infinitely high towers T and T ′ in Tow(µ,B) are

isomorphic if they are hybrid conjugate to each other.

Recall that each baby Mandelbrot set M has an associated stretching homeomor-

phism σ : M → M. On the function space, we define analogously the homeomorphism
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σp onto Q acting on the family of p-renormalisable quadratic maps fc where c ∈M .

Theorem 6.16. Let fc be an infinitely renormalisable quadratic map with a priori

bounds. If σp(fc) = fc for some p > 1, then:

(A) there is a unique fixed point [F ] ∈ Gc of the renormalisation operator Rp;
(B) for any [f ] ∈ Gc, Rnp ([f ])→ [F ] as n→∞.

Proof. Suppose [F ] is a fixed point of Rp in Gc. Pick a normalised quadratic-like map

F : U → V in QL representing [F ], then from example 6.3, [F ] induces a bi-infinite

tower T = {Fs}s∈S where S = {pn | n ∈ Z}. By the assumption, T has a priori bounds

and stationary combinatorics.

If [F̃ ] is another fixed point of Rp in Gc, the tower T̃ induced by [F̃ ] will be hybrid

conjugate to T since all maps in T and T̃ have the same hybrid class. By rigidity in

Theorem 6.15, T̃ is isomorphic to T . In particular [F̃ ] = [F ].

Pick any [f ] ∈ Gc. For any quadratic-like representative f : U → V in QLc, there is

a hybrid conjugation between f and fc with dilatation depending on mod(V \U). The

conjugation thus distorts moduli by a definite factor, so f must have a priori bounds

with some constant m. The limit set of the orbit {Rnp [f ]}n∈N is non-empty since the

entire orbit lies in a precompact set G(m). From the hypothesis, Gc is an invariant set of

the operator Rp, so by continuity of the straightening operator, the limit set is indeed

contained in Gc.
Let [g1] be a limit of the orbit and with a normalised quadratic-like representative

g1. Let T be the infinite tower with level set S = {pn | n ∈ N} from [g1] generated by

g1. We can extend T to a bi-infinite tower as follows.

If [g1] is the limit of some subsequence {Rnip (f)}i∈N, then the limit point gp−1 of

{Rni−1
p (f)}i∈N satisfies Rp[gp−1 ] = [g1]. Consequently, we can pick a quadratic-like

map gp−1 representing [gp−1 ]. Continue extending it inductively to obtain a bi-infinite

sequence {gn}n∈Z satisfying Rp(gn) = gn+1. We then have a bi-infinite tower T , and it

has a priori bounds since all maps in T must lie in G(m).

Let [g̃1] be another limit of the orbit {Rnp [f ]}n∈N with corresponding bi-infinite tower

T̃ , then T and T̃ are again hybrid conjugate. By Theorem 6.15, T and T̃ are isomorphic,

so then [g̃1] = [g1] and in particular, Rnp [f ]→ [g1] as n→∞. As [g1] is a fixed point of

Rp, [g1] = [F ]. We have then obtained existence and convergence.

The next goal is to obtain from the fixed point [F ] ∈ Gc a holomorphic map satisfying

the Cvitanovic-Feigenbaum equation (6.4). To do this, we wish to extend the domain

of a normalised quadratic-like representative of the germ and obtain some uniqueness

property.

Definition 6.6. A holomorphic map f : W → C is an extended quadratic-like map if

W ⊂ C is a topological disk containing 0, f has a critical point at 0 and can be restricted

to a quadratic-like map in QL. The space of all extended maps is denoted by H.
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An extended quadratic-like map f ∈ H obviously has a well-defined filled Julia set

K(f) since any two quadratic-like restrictions of f have the same filled Julia set due

to Proposition 4.5. Moreover, the straightening operator χ : H → Q can be defined by

taking the straightening of a quadratic-like restriction. As such, we can also denote the

fibres of χ in H as the leaves Hc, for c ∈M.

The topology of H is defined by saying that fn : Wn → C converges to f : W → C
if and only if for any compact subset K ⊂ W , K ⊂ Wn for all sufficiently large n and

fn → f uniformly on K.

Similar to G, we can define the renormalisation operator Rp on H as follows. If f :

W → C is an extended quadratic-like map which can be restricted to a p-renormalisable

quadratic-like map, then define

Rpf : W ′ → C, z 7→ afp(a−1z),

where a ∈ C∗ is a normalising constant and W ′ = aW ′′ where W ′′ is a component of

f−p(C) containing 0. We will adapt McMullen’s argument in [McM96, §7.3].

Theorem 6.17. Let [F ] be a fixed point of the renormalisation operator Rp in Gc for

some c ∈M. Then:

(A) any normalised quadratic-like map F : U → V with germ [F ] has a unique maximal

analytic continuation F̃ : W → C in H;

(B) the map F̃ is the unique fixed point of Rp in H with germ [F ];

(C) for any f ∈ Hc, Rnpf → F̃ as n→∞.

Proof. Let Fn := RnpF : Wn → anV where Wn = anF−p
n
(V ). Since Rp[F ] = [F ],

we have Fn = F on a neighbourhood of J(F ). Each Fn is then a proper analytic

continuation of F .

Observe that anV → C in the Hausdorff topology since V contains an open

neighbourhood of 0. Let W =
⋃
n∈NWn. Pick any compact connected set K together

with an analytic continuation F̂ of F defined in a small neighbourhood W ′ of K, then

F̂ (K) ⊂ aNV for some sufficiently large N . Obviously, F̂ is an analytic continuation of

Fn, and by properness, the open subset of W ′ ∪WN on which F̂ = F holds is closed,

so then by connectedness, F̂ = F on the whole W ′ and K ⊂ W ′ ⊂ WN . In particular,

the argument holds for any compact connected set K ⊂ W , so then Wn → W in the

Carathéodory topology. This proves the maximality of the domain W and existence of

the limit F̃ : W → C of Fn, which is an analytic continuation of F .

To show that F̃ ∈ H, we need that W is simply connected. Pick any n ∈ N,

then anV is eventually contained in aNV and by the same closed-open argument as

above, Wn ⊂ WN for all sufficiently large N . Now pick any simple closed loop γ ⊂ W .

By compactness, γ is covered by a finite number of Wn’s, all of which are eventually

contained in WN for some sufficiently large N . As WN is simply connected, the region

bounded by γ lies in W and in particular W must be simply connected.

The domain of RpF̃ is W since it cannot be larger than W by maximality and any

58



compact K in the domain must also be contained in Wn for sufficiently large n. As

RpF̃ = Rp limRnpF = limRn+1
p F = F̃ , F̃ is fixed by Rp.

Let G : Z → C be another fixed point of Rp in H with germ [F ]. Using similar

arguments, its quadratic-like restriction G|U ′ : U ′ → V ′ for some open topological disks

U ′ b V ′ will have unique maximal continuation F̃ and RnpG|U ′ → F̃ . Thus, W ⊂ Z.

By maximality of W , it follows that G = F̃ .

Pick any f ∈ Hc and assume that it is normalised (else, take Rpf instead). It is

sufficient to prove convergence for some quadratic-like restriction of f . The restriction

of f is hybrid conjugate to F via some quasiconformal map φ. Recall from 6.5 that

we can assume φ to be defined on the whole Ĉ. We then also obtain a sequence of

quasiconformal maps φn : Ĉ → Ĉ acting as hybrid conjugacies between Rnpf and RnpF
on their respective neighbourhood of Julia sets.

From the proof of Theorem 6.16 [Rnpf ] → [F ], so any limit of φn, which exists

following compactness in Theorem 2.8, 1 and ∞, gives a quasiconformal conjugacy

between the bi-infinite tower generated by F and itself. By rigidity in Theorem 6.14,

the towers are affinely conjugate and in fact it will be the identity. Thus, φn → Id and

we have limRnpf = limRnpF = F̃ .

Recall that infinitely renormalisable real quadratic maps fc where c ∈ R always have

a priori bounds.

Corollary 6.18. For any real maximal superstable parameter c̃ ∈M∩R of period p > 1,

the corresponding stretching homeomorphism σ : M → M has a fixed point c ∈ M ∩ R
and we have the following:

(A) there is a unique quadratic-like germ [F ] ∈ Gc fixed by Rp and for any germ

[f ] ∈ Gc, Rnp ([f ])→ [F ];

(B) there is a unique extended quadratic-like map F̃ ∈ Hc fixed by Rp and for any map

f ∈ Hc, Rnp (f)→ F̃ .

Figure 6.2: The real graph of the analytic continuation of the renormalisation
fixed point corresponding to the Feigenbaum map fcF .
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