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Chapter 1

Holomorphic Dynamics

Most of the content in this chapter is based on the books of McMullen1 and Lyubich2.

1.1 Quasiconformal maps

Definition 1. A K-quasiconformal (K ≥ 1) map φ : U → V is an orientation preserving
homeomorphism between domains U, V ⊂ Ĉ satisfying any of the following equivalent
criteria:

1. for any curve family Γ in U , 1
Kmod(Γ) ≤ mod(φ(Γ)) ≤ Kmod(Γ);

2. φ is absolutely continuous on lines (ACL), i.e. locally absolutely continuous on almost
every horizontal and vertical lines, and |φz̄| ≤ K−1

K+1 |φz| almost everywhere on U ;

3. φ has locally integrable distributional derivatives and |φz̄| ≤ K−1
K+1 |φz| as distributions.

Proposition 1.1.1. The space of normalised K-quasiconformal maps f : U → V is com-
pact in the compact-open topology.

Definition 2. The complex dilatation of a quasiconformal map φ : U → V is the Beltrami

form µφ = ∂̄φ
∂φ = φ∗σ, where σ is the zero Beltrami form.

Theorem 1.1.2 (Ahlfors-Bers’ Measurable Riemann Mapping Theorem). For every mea-
surable µ : U ⊂ Ĉ→ D with supremum norm ‖µ‖∞ = k < 1, there is a quasiconformal map
φ on U with complex dilatation µφ = µ (almost everywhere on U). Moreover, φ is unique
up to post-composition with a conformal isomorphism and it depends holomorphically on
µ.

1C. McMullen. Complex Dynamics and Renormalization. Princeton University Press, 1994.
2M. Lyubich. Conformal Geometry and Dynamics of Quadratic Polynomials, Vol I-II. Book in prepara-

tion, http://www.math.stonybrook.edu/ mlyubich/book.pdf, 2020.
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1.2 Dynamics of Rational Maps

Definition 3. The Fatou set F (f) of a holomorphic map f : X → X on a Riemann surface
X is the open set of points z ∈ X at which the restriction of the forward iterates (fn|U )n∈N
to some small neighbourhood U of z forms a normal family. The Julia set J(f) of f is the
complement X\F (f).

By Montel’s theorem, whenever X is a hyperbolic Riemann surface, F (f) = X and
J(f) = ∅. We will restrict ourselves to the case where X = Ĉ and f is a degree d > 1
rational map. Below is a list of basic properties of Fatou and Julia sets.

1. F (f) is open, J(f) is non-empty and perfect, and both are invariant under f ;

2. The number of components of F (f) is either 0, 1, 2, or ∞.

3. f is topologically transitive on J(f);

4. For almost all z ∈ J(f), the set of all iterated preimages of z is dense in J(f);

5. If J(f) 6= Ĉ, then J(f) is nowhere dense in Ĉ;

6. All parabolic periodic cycles are contained in J(f);

7. The set of all repelling periodic points is dense in J(f).

One example of a rational map with J(f) = Ĉ is a Lattès map. This is obtained by
taking the quotient of an affine map on a complex torus via the Weierstrass P-function.

The local dynamics near a p-periodic point z0 depend on the multiplier λ.

1. Attracting / repelling case:
When |λ| 6= 0, 1, there is a conformal map φ near z0 such that φ(z0) = 0 and
φ ◦ fp(z) = λφ(z);

2. Superattracting case:
When λ = 0, there is a conformal map φ near z0 such that φ(z0) = 0 and φ ◦ fp(z) =
φ(z)2.

3. Parabolic case:
When λ = e2πip′/q for some coprime positive integers p′ < q, if f q 6≡ Id, there are ν
disjoint petals rooted at z0 and cyclically labelled as P1, . . . Pν such that:

• f rotates the flower
⋃ν
m=1 Pm with rotation number p′

q ;

• fn(z)→ z0 for all z ∈ Pj ;
• There are conformal maps φj on Pj such that φj ◦ f(z) = φj(z) + 1;
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• µ is a multiple of q and the germ of f near z0 looks like e2πip′/qz + azν+1 + . . ..

4. Siegel case:
When λ = e2πiθ for some irrational θ and z0 ∈ F (f), then there is a conformal map
φ near z0 such that φ(z0) = 0 and φ ◦ fp(z) = λφ(z).

5. Cremer case:
When λ = e2πiθ for some irrational θ and z0 ∈ J(f), there is no such linearisation.

In cases 1 (attracting) and 3, the interior of the set of all points z such that fnp(z)→ z0

as n→∞ is called the immediate basin of attraction of z0. Its union with all the iterated
preimages is called the basin of attraction of z0. In case 4, the largest neighbourhood of z0

on which φ is well-defined is called the Siegel disk at z0.

By Riemann-Hurwitz formula, every rational map f of degree d contains 2d− 2 critical
points. Denote the set of critical points by C(f) and the postcritical set, i.e. closure of all
forward iterates of critical values by P (f).

Theorem 1.2.1. Let f be a rational map of degree d ≥ 2.

1. When |P (f)| ≤ 2, then f is conjugate to z±d.

2. When |P (f)| ≥ 3, then Ĉ\P (f) admits a hyperbolic metric ‖·‖.

(a) If f(z) 6∈ P (f), then ‖f ′(z)‖ ≥ 1;

(b) If z ∈ J(f) and if the forward orbit O+
f (z) is disjoint from P (f), then ‖(fn)′(z)‖ →

∞ as n→∞.

Theorem 1.2.2. The postcritical set P (f) contains all attracting, parabolic and Cremer
periodic cycles of f , and the boundary of Siegel disks and Herman rings.

Theorem 1.2.3 (Ergodic or Attracting). Either J(f) = Ĉ and f acts ergodically on Ĉ,
or dist(fn(z), P (f))→ 0 in spherical distance as n→∞ for almost all z ∈ J(f).

Thus, P (f) is the measure-theoretic attractor of f |J(f) when J(f) has positive area.

Theorem 1.2.4 (Classification + No wandering domains). Every component U of the
Fatou set of a rational map f is preperiodic. If it is periodic of period p, then one of the
following cases holds:

1. U is an immediate basin of attraction of an attracting periodic point lying inside U ;

2. U is an immediate basin of attraction of a parabolic periodic point lying on ∂U ;

3. U is a Siegel disk;
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4. U is a Herman ring, i.e. an annular domain on which fp is conjugate to an irrational
rotation.

The theorem above relies on Sullivan’s proof of the No Wandering Domains theorem
(via quasiconformal defomations), the study of dynamics of holomorphic self-maps on hy-
perbolic Riemann surfaces, and the following Lemma.

Lemma 1.2.5 (Necklace Lemma). Let f be a holomorphic germ with fixed point 0 of
multiplier ρ. If |ρ| = 1 and there is a domain Ω near but not containing 0 such that
f(Ω) ∩ Ω 6= ∅ and fn(Ω)→ 0, then ρ = 1.

Theorem 1.2.6. Let f be a rational map. The following are equivalent characterisations
of hyperbolicity of f .

1. J(f) ∩ P (f) = ∅;

2. J(f) contains no critical points or parabolic cycles;

3. Every critical point lies in the basin of an attracting cycle;

4. There is a smooth conformal metric ‖·‖ρ on a neighbourhood of J(f) and some C > 1
such that ‖f ′(z)‖ ≥ C for all z ∈ J(f);

5. For some n ∈ N, fn is strictly expanding w.r.t. spherical metric on J(f).

Proposition 1.2.7. If f is a hyperbolic rational map and J(f) is connected, then

• Each Fatou component is a Jordan disk;

• For any ε > 0, there are only finitely many Fatou components of diameter > ε;

• J(f) is locally connected.

Theorem 1.2.8. Let f be a rational map. The following are equivalent characterisations
of subhyperbolicity of f :

1. There is a conformal orbifold metric ‖·‖ρ on a neighbourhood of J(f) and some C > 1
such that ‖f ′(z)‖ ≥ C for all z ∈ J(f);

2. Every critical point is either preperiodic or lies in the basin of an attracting cycle.

Corollary 1.2.9. The Julia set J(f) of a subhyperbolic rational map f has zero area unless
it is a Lattès map.

Proposition 1.2.10. If f is a subhyperbolic rational map and J(f) is connected, then
J(f) is locally connected.
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In contrast, there are rational maps f with connected but not locally connected Julia
set. One example of which is the Julia set of a quadratic polynomial which has a Cremer
periodic cycle.

Definition 4. A line field on a subset E of a Riemann surface X is a family of tangent
lines through the origin on the tangent space TzX for each z ∈ E.

Each tangent line can be described by either a unit vector field v = ±v(z)∂z or a
Beltrami form µ = µ(z)dz̄dz , where |µ| = 1, acting on TzX in the following way:

µ (a(z)∂z) = µ(z)
a(z)

a(z)
.

v and µ are related by the equation µ(v) = 1. The line field µ is holomorphic / meromorphic

if locally, µ = φ̄
|φ| for some holomorphic / meromorphic quadratic differential φ = φ(z)2dz2

on E. Such a φ is unique up to multiplication by a positive number; we say that µ is dual
to φ.

Definition 5. A rational map f admits an invariant line field if there is a measurable
line field µ on a subset E ⊂ J(f) of positive measure (take µ = 0 outside of E) such that
f∗µ = µ almost everywhere.

Example 1. Let X = C\Z + τZ, τ ∈ H, be a complex torus and define the linear map
L(z) = nz on X where n ∈ N>1. The constant line field ∂z on X is invariant under L.
Therefore, the induced Lattès map f : C → C, called an integral torus endomorphism,
admits an f -invariant line field v on the whole Julia set, which is the whole Ĉ.

Lemma 1.2.11. A rational map is an integral torus endomorphism if it admits an invari-
ant line field µ which is holomorphic on an open subset of J(f).

Theorem 1.2.12. A rational map f is an integral torus endomorphism if it admits an
invariant line field on J(f) and P (f) is not the measure-theoretic attractor on J(f).
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1.3 Dynamics of Quadratic Maps

Let f be a monic polynomial of degree d. The dynamics of f satisfies the following prop-
erties:

• The Fatou set F (f) contains no Herman rings;

• ∞ is a superattracting fixed point and a critical point of multiplicity d− 1.

• There are d− 1 finite non-repelling periodic cycles counting multiplicity.

• There is a neighbourhood A of ∞, some r ≥ 1 and a conformal isomorphism called
the Böttcher map B : A→ Ĉ\D̄r fixing ∞ such that B ◦ f(z) = B(z)d. B is unique
up to post-composition with rotation by (d− 1)th roots of unity.

• No finite critical points lie on the basin of infinity Af (∞) if and only if A = Af (∞)
and r = 1 if and only if the Julia set J(f) is connected.

Define the filled Julia set of f as K(f) = Ĉ\Af (∞). When K(f) is connected, any
Böttcher map B induces foliations induced by equipotentials Et = B−1({|z| = et}) of levels
t > 0 and external rays Rθ = B−1({arg(z) = 2πθ}) of angles θ ∈ R\Z.

Let Rθ(t) = B−1(et+dπiθ) for t > 0, θ ∈ R\Z. A ray Rθ lands at a point w ∈ J(f) if
and only if B−1(reiθ)→ w as r decreases.

Lemma 1.3.1. The set of angles such that Rθ has a landing point has full measure in S1.

Lemma 1.3.2. For any θ, Rθ[t, dt]→ 0 as t→ 0.

Theorem 1.3.3. Let f be a polynomial of degree d ≥ 2 with connected Julia set J(f).

• For any odd rational θ, Rθ is a periodic ray of some period p′ and it lands at a
parabolic / repelling periodic point of some period p dividing p′;

• Every parabolic / repelling periodic point is the landing point of at least one but at
most finitely many odd rational external rays.

By taking pullbacks, the same theorem holds for external rays with even rational angles
and pre-periodic points on J(f). If a ray Rθ lands at a Cremer periodic point w, then θ
must be irrational and K(f)\{w} has infinitely many components.

From here on, we shall focus on the case where d = 2. By conjugation via affine maps,
it is sufficient to look at the quadratic family fc(z) = z2 + c, c ∈ C.

Theorem 1.3.4 (Dichotomy Theorem). For a quadratic f = fc, either

• 0 ∈ K(f) and K(f) is connected, or

• 0 6∈ K(f) and K(f) is a Cantor set.
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In the Cantor case, we can still define foliations onAf (∞), but there will be singularities
on the set of precritical points O−f (0). The vertical leaves will be external rays from ∞ to

either K(f) or O−f (0), and separatrices, i.e. arcs from K(f) to O−f (0).

Theorem 1.3.5. Let f be a hyperbolic quadratic map with connected J(f).

1. The inverse Böttcher map B−1 : Ĉ\D̄→ Ĉ\K(f) admits a Hölder continuous exten-
sion to ∂D;

2. On the immediate basin D0 of an attracting p-periodic point with multiplier ρ, fp is
conformally conjugate to the Blaschke product z(z+ρ)

1+ρ̄z and has a unique fixed point β0

on ∂D0 called the root of D0;

3. There is some ε > 0 such that for all z ∈ J(f), all inverse branches of f−n are well
defined in D(z, ε) and have absolutely bounded distortion;

4. There’s some uniform K such that all finite components of F (f) are K-quasidisks.

Let f be a hyperbolic quadratic map with connected J(f) and a strictly attracting
p-periodic cycle α0 . . . αp−1 with immediate basin components D0, . . . Dp−1 labelled such
that D0 contains 0. We can perform attracting-superattracting surgery as follows.

1. By looking at the action of fp on ∂D0, we can take a quasiconformal map h0 : D0 → D
which quasisymmetrically conjugates fp|∂D0 and f0|∂D.

2. The Riemann mapping hn : (Dn, αn, βn) → (D, 0, 1) for n = 1, . . . p − 1 satisfies
hn = hn+1 ◦ f (let hp = h0).

3. As h1 ◦ f = f0 ◦ h0 on ∂D0, we have a quasiregular map

F =

{
h−1

1 ◦ f0 ◦ h0, on D0,

f, on Ĉ\D0.

Theorem 1.3.6. F is conjugate to a unique superattracting quadratic fc0 via some quasi-
conformal map H that is conformal on Af (∞).

Corollary 1.3.7. The Julia set J(f) and J(fc0) are quasiconformally equivalent.

The Hubbard tree T of a postcritically finite quadratic map fc is the allowable hull of
O+
fc

(0) = {ck := fkc (0)}k≥0 in K(f). If f is hyperbolic but not superattracting, we can
define the Hubbard tree similarly by the surgery procedure above. When 0 is not a fixed
point, the Hubbard tree has the following properties:

1. The Hubbard tree T together with its vertices {ck} and branch points {bk} are
forward invariant;
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2. 0 is not a branch point of T ;

3. There is some l ≥ 1 such that c1, . . . cl are tips of T .

4. The segment [0, c] always contains the α-fixed point.

Suppose f = fc is superattracting, We also have the following properties on the at-
tracting basin.

1. When superattracting, the basin of attraction of 0 is dense in T .

2. The closures of two immediate basin components are either disjoint or meet at their
root points.

We say that f is primitive if the closures of immediate basin components are all pairwise
disjoint. Otherwise, f is satellite.

Let p be the period of the superattracting cycle, D1 be the valuable immediate basin
of attraction of 0 and let β1 be its root. The system of external rays {Rθj}j=1,...m landing
at β1 split C into m sectors. Let the characteristic sector Sch be the valuable one; its
boundary consists of two characteristic rays Rθ± .

The characteristic geodesics γch in D joining e2πiθ± generates a unique geodesic lami-
nation in D completely invariant under the doubling map T (z) = z2. The quotient of this
lamination gives a topological model of J(f).

Theorem 1.3.8. The characteristic angles θ± determine the Hubbard tree T and vice
versa.

For a general quadratic map f = fc with connected Julia set, we can also consider
the combinatorial model using geodesic laminations. For every dividing preperiodic or
periodic point a ∈ J(f), the set of angles of external rays landing at a induces an ideal
geodesic/polygon in D. The combinatorial lamination of f is defined to be the quotient of
D under the closure of all such geodesics/polygons.

Definition 6. The combinatorial class of a quadratic map f is the set of all quadratic
maps combinatorially equivalent to f , i.e. have the same combinatorial lamination. If the
combinatorial class is trivial, we say that f is combinatorially rigid.

Lemma 1.3.9. The Julia sets of hyperbolic quadratic maps are quasiconformally remov-
able.

Theorem 1.3.10. Superattracting quadratic maps are combinatorially rigid.

Definition 7. A map f : U → V is a polynomial-like map of degree d if U b V are open
domains of C and f is a holomorphic branched covering of degree d. The filled Julia set
and the Julia set of f are the compact set K(f) =

⋂
n≥0 f

−n(U) and J(f) = ∂K(f).
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Definition 8. Two polynomial like-maps fj : Uj → Vj are hybrid equivalent if there is a
quasiconformal map φ from a neighbourhood of K(f1) to a neighbourhood of K(f2) such
that φ ◦ f1 = f2 ◦ φ, and φ has zero complex dilatation almost everywhere on K(f).

Theorem 1.3.11 (Straightening Theorem). Every degree d polynomial like map f : U → V
is hybrid equivalent to some degree d polynomial g. If K(f) is connected, then g is unique
up to affine conjugacy.

Hence, most of the topological and dynamical properties of the filled Julia sets of
polynomial-like maps can be deduced from the usual polynomial case. Assume from now
on that d = 2, 0 is the unique critical point, and quadratic-like maps are even.

Definition 9. A quadratic-like map f : U → V is n-renormalisable if there are domains
Un b Vn contained in V such that the restriction fn : Un → Vn is quadratic-like with
connected filled Julia set Kn.

In fact, Kn of the n-renormalisation is independent of the choice of domains Un and Vn.
The corresponding small filled Julia sets are denoted by Kn(i) := f i(Kn) for i = 0, . . . n−1.

Proposition 1.3.12. Two small filled Julia sets are either disjoint or intersect on a sin-
gleton, which is necessarily a repelling fixed point α of fn.

The periodic point α must be universally of the same type (dividing or not). We will
assume that it is always non-dividing. (else, we call the renormalisation crossed.) This gives
us a satellite renormalisation. If all small filled Julia sets are disjoint, the renormalisation
is primitive.

Proposition 1.3.13. If a quadratic-like map f is n-renormalisable, any non-repelling
periodic points have period divisible by n.

Renormalisability can be expressed in terms of Yoccoz puzzles made up of dynamical
external rays and equipotentials. More precisely, the critical orbit is must be recurrent, i.e.
fkn(0) must lie in the critical impression of the puzzles for all k ≥ 0. Every renormalisation
of a quadratic map f comes with a unique combinatorics, which can be described by the
characteristic rays of the Yoccoz puzzles inducing the renormalisation or the associated
Hubbard tree.

Proposition 1.3.14. If a quadratic-like map f is infinitely renormalisable, then

1. For each p ∈ N>0, there are at most finitely many renormalisation levels n such that
the small filled Julia set Kn contains a p-periodic point;

2. f is periodically repelling;

3. The postcritical set P (f) and the impression of small filled Julia sets
⋂
n ∪

n−1
j=0 f

j(Kn)
contain no periodic points.
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Proposition 1.3.15. Let f be an n-renormalisable quadratic map. Almost all z ∈ K(f)
eventually land on the small filled Julia set Kn.

Theorem 1.3.16 (Lyubich-Shishikura). Let f = fc be a quadratic map and suppose J(f)
is connected with positive area.

• If both fixed points are repelling, then f is renormalisable;

• If f is periodically repelling, then f is infinitely renormalisable.
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1.4 Parameter spaces

Definition 10. A holomorphic motion of a subset X ⊂ Ĉ parametrised by a pointed
complex manifold (Λ, λ0) is a function φ : Λ×X → Ĉ such that

• for every z ∈ X, φ(λ, z) is holomorphic in λ;

• for every λ ∈ λ, φ(λ, z) is injective in z;

• φ(λ0, ·) = IdX .

Lemma 1.4.1 (λ-Lemma). Every holomorphic motion φ(λ, z) of X parametrised by (Λ, λ0)
extends to a unique holomorphic motion of the closure X̄. The extension is continuous and
quasiconformal in z onto its image.

Theorem 1.4.2 (Slodkowski). Every holomorphic motion φ on X parametrised by the
unit disk D extends to a holomorphic motion on Ĉ.

Theorem 1.4.3. Let {fλ}λ∈(Λ,λ0) be a holomorphic family of rational maps. The following
are equivalent characterisations of J-stability:

1. The number of attracting cycles of fλ is locally constant at λ0;

2. The maximum period of attracting cycles of fλ is locally bounded at λ0;

3. J(fλ) moves holomorphically near λ0;

4. Every indifferent periodic point of fλ for λ near λ0 is persistent;

5. J(fλ) is continuous in λ near λ0 in Hausdorff metric topology.

Moreover, if all critical points are holomorphically parametrised as ci(λ), all of the above
are equivalent to the following:

6. {λ 7→ fnλ (ci(λ))}n≥1 form a normal family near λ0;

7. For all λ near λ0, ci(λ) ∈ J(fλ) if and only if ci(λ0) ∈ J(fλ0).

Corollary 1.4.4. The set Λs of J-stable parameters is open and dense in Λ. The set Λh

of hyperbolic parameters is a clopen subset of Λs.
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1.5 The Mandelbrot Set

Proposition 1.5.1. The Mandelbrot set M ⊂ C can be defined in the following equivalent
ways:

1. M = {c ∈ C : fnc (0) 6→ ∞ as n→∞};

2. M = {c ∈ C : |fnc (0)| ≤ 2 for all n ≥ 0};

3. M = {c ∈ C : K(fc) is connected}.

Let Bc be the unique Böttcher map for the quadratic fc, defined on a neighbourhood
of ∞. When c ∈ M, Bc defines a foliation of dynamical rays Rθc and equipotentials Etc on
the basin of infinity Afc(∞).

Theorem 1.5.2. The map Ψ : C\M → C\D̄, c 7→ Bc(c) is the unique conformal isomor-
phism tangent to the identity at ∞.

Corollary 1.5.3. The Mandelbrot set M is a non-empty bounded connected compact full
subset of C. All components of intM are simply connected.

Corollary 1.5.4. The map Ψ gives rise to a foliation of parameter external rays Rθpar and
equipotentials Etpar on C\M. Moreover,

• c ∈ Rθpar if and only if c ∈ Rθc ,

• c ∈ Etpar if and only if c ∈ Etc

Corollary 1.5.5. Every dynamical ray Rθc crashes at some precritical point if and only if
c ∈ C\M and Tn(θ) = arg Φ(c) in R\Z for some n ≥ 1.

On Ω := {(c, z) ∈ C2 : z ∈ Afc(∞) if c ∈ M, |Bc(z)| > |Bc(0)| if c 6∈ M}, the map
B : Ω → C\D̄ is a holomorphic submersion. Its fibers Lb = B−1(b) for |b| > 1 are local
holomorphic graphs forming a holomorphic foliation B called the Böttcher fibration.

Proposition 1.5.6. Suppose Σr
par is the disk bounded by Eln r

par . The Böttcher fibration B
satisfies the following properties.

• B is invariant under the fibered dynamics F (c, z) = (c, fc(z));

• Each fiber Lb is the graph of a holomorphic map z = φb(c) for c ∈ Σ
|b|2
par;

• When |b| >
√
r > 1, the fibers Lb restrict to an equivariant biholomorphic motion

B−1
c : C\D̄√r → B−1

c (C\D̄√r) over c ∈ Σr
par.

• The diagonal Γ of (C\M)2 is a global transversal to the foliation B intersecting each
fiber Lb exactly once.
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• B extends holomorphically to {(c, z) z ∈ Afc(∞)}. The extended leaves Lb are graphs
of branched coverings over the parameter plane with simple branched points at the
precritical locus {(c, z) z ∈ O−fc(0)}.

Lemma 1.5.7. Let (Λ, c0) ⊂ C be a pointed domain and θ be an angle such that Tn(θ) 6=
arg Φ(c) for all c ∈ Λ\M.

1. The Böttcher map B−1
c Bc0 induces a holomorphic motion of external rays Rθc over

(Λ, c0);

2. If Rθc0 at some ac0 ∈ J(fc0), then each ray Rθc also lands at some point ac ∈ J(fc)
depending holomorphically on c ∈ Λ.

In particular, the domain Λ can be taken to be any component of C\
⋃
n≥0R

Tn(θ)
par .

Theorem 1.5.8. The complement C\∂M can be characterised in the following equivalent
ways:

• The set of all parameters c0 such that the polynomials {c 7→ fnc (0)}n≥0 form a normal
family near c0;

• The set of J-stable parameters for the quadratic family;

• The largest open subset of C over which the Böttcher map B−1
c Bc0 induces a holo-

morphic motion of Julia sets J(fc);

• The largest open subset not containing any neutral parameters.

A parameter c ∈M is called Misiurewicz if 0 is strictly preperiodic under the quadratic
fc. In this case, fc is periodically repelling and subhyperbolic.

Corollary 1.5.9. The boundary of M can be approximated by any of the following set of
parameters:

• Parabolic parameters;

• Superattracting parameters;

• Misiurewicz parameters, i.e. c such that 0 is strictly preperiodic under fc.

A component H of the interior of M is called hyperbolic if it contains a hyperbolic
parameter, queer if otherwise. Every hyperbolic component H has an associated attracting
cycle moving holomorphically throughout H. The period of H would refer to the period
of this attracting cycle.

Proposition 1.5.10. For every hyperbolic component H of period n and every non-zero
odd rational p/q ∈ Q\Z,
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• there is a unique parabolic parameter c0 on the boundary of H of rotation number;

• there is a hyperbolic component H ′ of period nq attached to H at c0.

Over every pointed hyperbolic component (H, c0), there is a unique equivariant holo-
morphic motion B−1

c ◦ Bc0 : Afc(∞)→ Afc0 (∞) which, by λ-lemma, extends to the Julia
sets as well.

Theorem 1.5.11 (Multiplier Theorem). For any hyperbolic component H, the multiplier
ρ(c) of the associated attracting periodic cycle of fc induces a conformal isomorphism ρ :
H → D.

Corollary 1.5.12. Every hyperbolic component H has a unique superattracting parameter
cH called the center of H, and thus H admits a unique Hubbard tree. There are exactly
2p−1 hyperbolic components of period dividing p.

Lemma 1.5.13. Let f = fc be any quadratic map.

• f acts on any invariant line field µ on J(f) ergodically on the support of µ;

• f can have at most one invariant line field on J(f) up to rotation.

Theorem 1.5.14. A parameter c0 lies in a queer component Q if and only if fc0 has an
invariant line field on J(fc0).

In one direction, if µ0 is an invariant line field on J(fc0), then for λ ∈ D, λµ0 is an
fc0-invariant Beltrami coefficient with unique quasiconformal solution hλ : C → C fixing
0 and tangent to Id at ∞. Then, hλfc0h

−1
λ = z2 + σ(λ) for some holomorphic function

σ : D→ Q.

Theorem 1.5.15 (Queer Theorem). σ : (D, 0) → (Q, c0) is a Riemann mapping of the
queer component Q.

A parameter c in the quadratic family {fc} is structurally stable if fc′ is topologically
conjugate to fc for all c′ sufficiently close to c.

Theorem 1.5.16. The set of structurally stable parameters is the union of C\M, all queer
components, and all hyperbolic components with their centers removed. Moreover, the
parameter plane can be decomposed into quasiconformal conjugacy classes as follows:

• C\M;

• queer components;

• hyperbolic components with their centers removed;

• centers of hyperbolic components;
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• singletons on M.

The theorem follows from extending the Böttcher holomorphic motion (or a modified
version of it in the Cantor case) to the Julia set by λ-lemma. In the hyperbolic case, we
can also find an equivariant holomorphic motion of the attracting basins by modifying the
Koenigs linearisation on a fundamental annulus and pull it back to spread to the whole
attracting basin.

On the boundary of a hyperbolic component H, the attracting cycle associated to H
undergoes two types of bifurcation:

• Saddle node bifurcation at the cusps of primitive components, i.e. when an attracting
cycle and a repelling cycle collide to a parabolic one of multiplier 1 and then produce
two repelling cycles;

• Satellite bifurcation at the roots of hyperbolic components, i.e. when an attracting
cycle and a repelling cycle collide and swap.

Proposition 1.5.17. Let c̃ be the root of a hyperbolic component H with associated
parabolic repelling point βc0. For all c ∈ H,

• If Rθc0 lands at βc0, then Rθc lands at the repelling root βc of fc;

• fc̃ and fc has the same characteristic ray portrait;

• The Böttcher conjugacy B−1
c ◦Bc̃ extends to a conjugacy J(fc̃)→ J(fc).

Lemma 1.5.18 (Stability Lemma). Let R be a periodic ray of a polynomial f landing at a
repelling periodic point a. For any polynomial f̃ sufficiently close to f , the corresponding
ray R̃ for f̃ lands at the perturbed repelling periodic point ã of f̃ .

Corollary 1.5.19. If θ is a rational angle with odd denominator of some period p, the
parameter ray Rθpar lands at a parabolic parameter r with period divisible by p.

Theorem 1.5.20 (Wake Theorem). Let H be a hyperbolic component that is not the main
cardioid. Let r 6= 1

4 be the root of H with associated parabolic cycle αr with characteristic

angles θ±. Let Θ be the orbit of θ±. The component Wr of C\
⋃
θ∈ΘR

θ
par containing H is

called the wake rooted at r and it satisfies the following properties.

1. The rays R
θ±
c and their landing point αc persist and move holomorphically over the

whole wake c ∈Wr;

2. If fc has a parabolic or repelling cycle with associated periodic angles Θ, then c lies
in the wake Wr ∪ {r};

3. The multiplier map ρ on H extends to the whole Wr and, if H is satellite, to a
neighbourhood of r.
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By counting the number of p-periodic rational angles with odd denominator and p-
periodic hyperbolic components, we observe that exactly two parameter rays land at these
parabolic parameters. The closure Lr of M ∩Wr is called the limb of M rooted at r. The
center of Lr is the center of the hyperbolic component with root r.

Corollary 1.5.21. Let H be a hyperbolic component rooted at r such that parameter rays
R
θ±
par land at r. (If r = 1

4 , take θ− = 0 and θ+ = 1.)

• The set of angles SH landing on the boundary of H is nowhere dense and has zero
measure in [θ−, θ+];

• For every angle θ 6∈ S, Rθpar lands at a unique irrationally indifferent parameter
c ∈ ∂H0;

• Every irrationally indifferent parameter is the landing point of exactly one parameter
ray.

When the parabolic parameter r 6= 1
4 is attached to the main cardioid H0 and has

rotation number p
q , we label the corresponding wake Wp/q and the limb Lp/q. When r is

on the boundary of an arbitrary hyperbolic component H, denote the wake and the limb
rooted at r by Wp/q(H) and Lp/q(H).

Lemma 1.5.22. For any hyperbolic component H, any Hausdorff limit of an infinite se-
quence of distinct limbs attached to H is a singleton.

The rate of shrinking can also be estimated by Yoccoz inequality.

Theorem 1.5.23 (Yoccoz Inequality). For any hyperbolic component H, there is some
C = C(H) > 0 such that for any limb Lp/q(H) attached to H,

diamLp/q(H) ≤ C

q
.

Corollary 1.5.24. The Mandelbrot set is locally connected at the boundary of hyperbolic
components.

Theorem 1.5.25. Let θ ∈ R\Z be some angle.

• For every Misiurewicz parameter c0 ∈ ∂M, the dynamical ray Rθc0 lands on the Julia
set of fc0 at c0 if and only if the parameter ray Rθpar lands at c0;

• Every rational angle θ with even denominator induces a valuable ray Rθc0 landing at
c0 for some Misiurewicz parameter c0 ∈ ∂M.

Corollary 1.5.26. Misiurewicz quadratic maps are uniquely determined by their charac-
teristic angles and are therefore combinatorially rigid.
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The parameter rays landing at a Misiurewicz parameter c0 split the parameter plane
the Mandelbrot set M into Misiurewicz wakes and Misiurewicz decorations / limbs rooted
at c0.

Proposition 1.5.27. The Mandelbrot set M is well-branched at any Misiurewicz parameter
c0, i.e. every wake contains only one limb component.

Renormalisability determines the local connectivity of Julia sets and the Mandelbrot
set as follows.

Theorem 1.5.28 (Yoccoz). Let f = fc be a quadratic map with connected filled Julia set.
If f has no indifferent cycles and is at most finitely renormalisable, then

• the Julia set J(f) is locally connected;

• if f is not hyperbolic, c ∈ ∂M and the Mandelbrot set M is locally connected at c.

The theorem above can be reduced to the case where f is non-renormalisable. The proof
relies on the study of combinatorics of nested annuli around the critical point, resulting in
weak local connectivity. The local connectivity can be promoted to the whole Julia set.
Phase-parameter relations can help us transfer this property to the parameter plane. We
can apply the theorem above to the following:

• if c is a Misiurewicz parameter, the Julia set J(fc) is locally connected and the
Mandelbrot set is locally connected at c;

• if c is a queer parameter, fc must be infinitely renormalisable.

Below is a number of important conjectures in the study of the dynamics of quadratic
maps.

Conjecture 1 (Density of Hyperbolicity). Hyperbolic parameters are dense in M, i.e.
queer components do not exist.

Conjecture 2 (MLC). The Mandelbrot set is locally connected.

Conjecture 3 (No Invariant Line Fields). No quadratic map f = fc admits an invariant
line field on its Julia set.

Conjecture 4 (Rigidity). All periodically repelling parameters are combinatorially rigid.

The conjectures are known to be related by the following diagram.

MLC⇐⇒ Rigidity =⇒ Density of Hyperbolicity⇐⇒ No Invariant Line Fields

The first double arrow can be obtained through the following observation. (The other
arrows are obvious.) Rational rays landing at dividing preperiodic or periodic points on
J(f) persist on a parameter domain not intersecting any rational or Misiurewicz parameter
rays. Therefore...
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Proposition 1.5.29. Let fc0 be periodically repelling and c0 ∈ ∂M have combinatorial
class C.

1. C consists of parameters that can’t be separated from c0 by a rational or Misiurewicz
cut-line;

2. C is closed and ∂C ⊂ ∂M;

3. C is the impression of the rational parapuzzles containing c0.
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1.6 Review Questions

1. How do you define quasiconformal maps?

2. State the measurable Riemann mapping theorem.

3. Can you tell me about the dependence of the solution of the Beltrami equation on
the Beltrami coefficient? What about the inverse? Any example?

4. Explain the general procedure of quasiconformal surgery.

5. How do you define Fatou and Julia sets?

6. Which periodic cycles can be found on the Julia set?

7. Which rational maps have smooth Julia sets?

8. What are the possible Fatou components of a rational map?

9. How many Fatou components can a rational map have?

10. Sketch the proof of the no wandering domains theorem?

11. Which rational maps are hyperbolic or subhyperbolic? Can you tell me about some
properties of their Fatou and Julia sets?

12. Which rational maps admit invariant line fields on their Julia sets?

13. Explain how rational or irrational external rays land on the Julia set.

14. Is any periodic point on the Julia set always a landing point of an external ray?

15. How many rays would land on the boundary of a given finite Fatou component of an
attracting or parabolic quadratic map?

16. What is the measure of the set of tips of Julia sets?

17. Can you draw the Hubbard tree of a given subhyperbolic quadratic map?

18. What are the complications in defining the Hubbard tree of a higher degree polyno-
mial?

19. Can you draw the associated combinatorial lamination of the Julia set of a given
quadratic map? How are they related to their Hubbard trees?

20. Define polynomial-like maps.

21. State the straightening theorem. Can you give a sketch of the proof?
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22. Which quadratic maps are renormalisable? Can you draw some Yoccoz puzzles asso-
ciated to a given quadratic map?

23. Which quadratic maps are infinitely renormalisable?

24. Which quadratic maps have locally connected Julia sets?

25. State the lambda lemma.

26. How do you define structural stability of a holomorphic family of maps? What about
J-stability?

27. Define the Mandelbrot set. Can you give a sketch?

28. Explain the phase-parameter relation. How does it arise?

29. How do you uniformise components of the interior of the Mandelbrot set?

30. Which parameters c are structurally stable? Why?

31. Which parameters c are quasiconformally equivalent?

32. Given a parameter on the Mandelbrot set, sketch the corresponding Julia set.

33. How do you define limbs and wakes of the Mandelbrot set?

34. How many parameter rays land on a given hyperbolic component?

35. State the MLC conjecture. What are other equivalent ways to formulate this conjec-
ture and why?



Chapter 2

Several Complex Variables

Most of this chapter follows from the book of Bers1. Notation:

• Polydisks in Cn are of the form Dn(z, r) = D(z1, r1) × . . . × D(zn, rn). I will denote
the essential boundary of each polydisk by Γ(z, r) := ∂D(z1, r1)× . . .× ∂D(zn, rn).

• For any compact subset K ⊂ Cn and continuous map f on K, ‖f‖K := supz∈K |f(z)|.

Definition 11. A function f : U → C on an open U ⊂ Cn is holomorphic if it satisfies
any of the following equivalent criteria:

1. f is holomorphic in each variable zj , j = 1, . . . n,

2. f admits a local Taylor series development
∑

α≥0 cα(z1−a1)α1 . . . (zn−an)αn at each
point a ∈ U .

Hartogs proved that the first implies the second using Osgood’s lemma. In higher
dimensions, many classical properties of complex analysis hold:

1. Cauchy’s integral formula:

f(w) =
1

(2πi)n

∫
Γ(w,r)

f(w)∏n
k=1(zk − wk)

dz1 . . . dzk.

2. Cauchy’s estimates

3. Maximum modulus principle

4. Identity theorem

5. Holomorphic functions are closed in the compact-open topology.

1L. Bers, Introduction to several complex variables, New York Univ. Press, New York, 1964.

23
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2.1 Domains of Holomorphy

Definition 12. A pair of open subsets D ⊂ E ⊂ Cn is a Hartogs pair / exhibits the
Hartogs’ phenomenon if every f ∈ O(D) admits a holomorphic extension F ∈ O(E), i.e.
the restriction map O(E)→ O(D) is a ring isomorphism.

Cauchy integrals and Laurent series often give a natural holomorphic extension. The
following theorem can be proved using Cauchy-Green.

Theorem 2.1.1 (Hartogs Extension Theorem). Let K be a non-separating compact subset
of a domain D ⊂ Cn. Then, (D\K,D) is a Hartogs pair.

Definition 13. Let D be a non-empty open set D ⊂ Cn.

• D a region of holomorphy (if connected, domain of holomorphy) if there is some
f ∈ O(D) which cannot be holomorphically extended to any neighbourhood of any
boundary point of D;

• ζ ∈ ∂D is essential if there is some f ∈ O(D) which cannot be holomorphically
extended to any neighbourhood of ζ.

• D is F-convex if for every compact K b D, the F-convex hull of K,

K̂F = {z ∈ D : |f(z)| ≤ ‖f‖K for all f ∈ F},

is also compact in D.

When F is the space of affine maps, the F-convex hull is the usual convex hull. We are
interested in the case when F is the family of polynomials Por holomorphic maps O(D).

Theorem 2.1.2 (Cartan-Thullen). For a domain D ⊂ Cn, the following are equivalent:

1. D is holomorphically convex,

2. All boundary points are essential,

3. D is a domain of holomorphy,

4. for any compact K b D, dist(K̂O(D), ∂D) = dist(K, ∂D).

Example 2. Every finite Cartesian product or intersection of regions of holomorphy is a
region of holomorphy.

Example 3. Every domain in C is a domain of holomorphy. This follows from either the
theorem above or directly using Weierstrass’ theorem.

Example 4. Every convex domain D ⊂ Cn is a domain of holomorphy.
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Consider the projection map ρ : Cn → [0,∞)n, z 7→ (|z1|, . . . |zn|). For every domain
D ⊂ Cn, we denote by D∗ the image ρ(D).

Definition 14. A domain D ⊂ Cn is

1. Reinhardt if for every z ∈ D, D contains the whole fiber ρ−1(ρ(z));

2. complete Reinhardt if for every z ∈ D, D contains the polydisk D(0, ρ(z));

A set E ⊂ [0,∞)n is logarithmically convex if logE := {(log x1, . . . log xn) : x ∈ E} is
convex in Rn.

Theorem 2.1.3 (Abel). Let D be the domain of convergence of a Taylor series f(z) =∑
α cαz

α.

• If the sequence {cαwα}α is bounded for some w ∈ Cn, then D contains the polydisk
D(0, (|w1|, . . . |wn|);

• D is a complete Reinhardt domain and D∗ is logarithmically convex.

When f is only a Laurent series, completeness can be dropped.

Theorem 2.1.4. Let D ⊂ Cn be a complete Reinhardt domain containing 0. The following
are equivalent:

1. D is the domain of (normal) convergence of a Taylor series about 0 of a holomorphic
function f(z) =

∑
α≥0 cαz

α;

2. D is logarithmically convex;

3. D is a domain of holomorphy.
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2.2 Pseudoconvexity

Definition 15. A function f : U ⊂ Rn → [−∞,∞) is subharmonic (SH) if it is upper
semi-continuous and it satisfies any of the following equivalent criteria:

1. for every compact K ⊂ U and continuous map h on K, if h is harmonic on int(K)
and u ≤ h on ∂K, then u ≤ h on K;

2. for every ball B(x,R) b U , the mean Mu(x, r) of u on ∂B(x, r) is increasing in
r ∈ [0, R].

3. for every ball B = B(x,R) b U , u(x) ≤ 1
Vol(B)

∫
B u(y)dy.

A function f : U ⊂ Cn → [−∞,∞) is plurisubharmonic (PSH) if it is upper semi-continuous
and subharmonic on every complex line on U .

Below is a list of key properties of SH and PSH functions:

1. PSH functions are SH;

2. SH functions satisfy the maximum principle;

3. (P)SH is a local property;

4. The sum / pointwise maximum of two (P)SH functions is (P)SH;

5. The limit of a decreasing sequence of (P)SH functions is (P)SH;

6. A C2 function u is SH if and only if the Laplacian ∆u is non-negative, PSH if and
only if the complex Hessian (uziz̄j )1≤i,j≤n is positive semi-definite.

7. PSH functions are still PSH under holomorphic change of coordinates.

Theorem 2.2.1 (Kontinuitatsatz). Let D ⊂ Cn be a domain and define ∆ : D →
[0,∞), δ(z) = dist(z, ∂D). The following are equivalent characterisations of pseudocon-
vexity.

1. − log ∆(z) is plurisubharmonic on D;

2. D admits a plurisubharmonic exhaustion ψ : D → [−∞,∞) i.e. ψ−1[−∞, c] is always
compact in U for all c ∈ R;

3. For every embedded complex disk Σ b U , ∆(Σ) = ∆(∂Σ);

4. D is plurisubharmonically convex;

5. For every countable collection of complex disks {Σj} in D, if ∪j∂Σj b D, then
∪jΣj b D.
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Corollary 2.2.2. Pseudoconvexity is invariant under holomorphic change of coordinates,
countable intersections, and a countable union of increasing domains.

Corollary 2.2.3. Domains of holomorphy are pseudoconvex.

Corollary 2.2.4. A domain D is pseudoconvex if and only if it is locally pseudoconvex
along the boundary, i.e. at each ζ ∈ ∂D, there is some neighbourhood U of ζ such that
D ∩ U is pseudoconvex.

Domains of holomorphy and pseudoconvex domains are essentially the same.

Theorem 2.2.5. A domain D ⊂ Cn is a domain of holomorphy if and only if it is pseu-
doconvex.

The ⇒ direction follows from maximum principle. The ⇐ is much more difficult and
is commonly known as the Levi problem.
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2.3 Cousin Problems

Let X be a topological space, F be a sheaf of abelian groups on X, and U = {Ui}i∈I be an
open cover of X indexed by an index set I. Denote each intersection ∩mk=1Uik by Ui1i2...ik .

For every natural number r ≥ 0, an r-cochain f is defined as a collection of local
sections fi0i1...ir of F(Ui0i1...ir) for each (r + 1)-tuple (i0, i1 . . . i1) ∈ Ir+1 such that

• fi0...ir ≡ 0 if Ui0...ir = ∅;

• fσ(i0)...σ(ir) = sgn(σ)fi0...ir for any permutation σ of {i0, . . . ir}.

The set of r-cochains Cr = Cr(X,U ,F) forms an abelian group under addition. The
coboundary operator

δ : Cr → Cr+1, (δf)i0...ir =
r+1∑
j=0

(−1)jfi0...îj ...ir

induces a cochain complex (C•, δ).
The rth-Čech cohomology Hr(X,U ,F) of U with coefficients in F is defined by the

quotient of the subgroup of r-cocycles Zr = Ker(δ : Cr → Cr+1) modulo the subgroup of
r-coboundaries Br = δ(Cr−1). rth-Čech cohomology Hr(X,F) of X with coefficients in F
is defined by the following direct limit:

Hr(X,F) = lim−→
U
Hr(X,U ,F).

A cover U = {Ui}i∈I is a Leray cover with respect to F if every finite intersection V of
open sets in U satisfies Hr(V,F) = 0 for all r > 0. Given a Leray cover U , Hr(X,F) =
Hr(X,U ,F). Moreover, assuming X is Hausdorff and paracompact, Čech cohomology is
isomorphic to sheaf cohomology.

Let X be a complex manifold of dimension n ≥ 1. The set of germs Op at p ∈ X is
the set of Taylor series at p which is convergent on a small neighbourhood of p in X. The
sheaf O of holomorphic functions on X is the disjoint union

⋃
p∈X Op, topologised such

that the natural projection O → X is continuous.
The field of quotients of O is the sheaf M of meromorphic functions; each germ is

represented by a local Laurent series. Meromorphic functions g on an open subset U can
be defined as sections of M on U , denoted by g ∈M(U).

The quotient sheaf M/O can be defined as the sheaf where the germs are principal
parts of Laurent series, i.e. we have the following exact sequence of sheaves:

0→ O ↪→M→M/O → 0.

The additive Cousin problem can be formulated in two different, yet equivalent ways:

1st Cousin Problem:
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• Given an open cover U = {Ui} of X and meromorphic functions Fj ∈ M(Uj) such
that Fj − Fk ∈ O(Ujk), can we find a global meromorphic function F ∈ M(X) such
that F − Fj ∈ O(Uj) for all j?

• Is the induced projection map H0(X,M)→ H0(X,M/O) surjective ?

• Is H1(X,O) = 0?

By the use of partitions of unity, the sheaf C∞ of smooth functions on X is a fine sheaf.
We conclude that the 1st Cousin problem is solvable if the following ∂̄-problem is solvable:

• Given a1, . . . an ∈ C∞(X) where (aj)z̄k = (ak)z̄j for all 1 ≤ j, k ≤ n, can we find
some A ∈ C∞(X) such that Az̄j = aj for all j?

Theorem 2.3.1. The ∂̄-problem is solvable when X = D1× . . . Dn is a product of n simply
connected domains Dj ⊂ C.

The connection between the ∂̄-problem, i.e. determining which ∂̄-closed (0,1)-forms are
∂̄-exact, and determining which 1st Cousin data is solvable is generalised by Dolbeault’s
theorem, which shall be mentioned in the next section.

Theorem 2.3.2 (Oka Extension Theorem). If the additive Cousin problem is always solv-
able on X and Y = {ψ = 0} is a regular hypersurface for some ψ ∈ O(X), then every
f ∈ O(Y ) admits an extension F ∈ O(X).

A stronger formulation of the theorem above essentially says that the restriction map
H0(X,O)→ H0(Y,O) is surjective if H1(X,O) = 0. In some cases, we may still allow the
presence of singularities.

Theorem 2.3.3. Let X be a complex manifold such that for some r ≥ 0, Hr(X,O) =
Hr+1(X,O) = 0. For any regular hypersurface Y = {φ = 0} on X, Hr(Y,O) = 0.

Corollary 2.3.4 (H. Cartan). If the additive Cousin problem is always solvable on a
domain D ⊂ C2, then D is a domain of holomorphy.

Corollary 2.3.5. If a domain D ⊂ Cn satisfies Hr(D,O) = 0 for 1 ≤ r ≤ n− 1, then D
is a domain of holomorphy.

We may actually extend the results of Oka and Cartan by induction.

Lemma 2.3.6 (Lemma A). Let X be an n-dimensional complex manifold such that Hq(X,O) =
0 for q > 0 and let f1, . . . fr ∈ O(X) be such that the matrix

(
(fi)zj

)
i=1...r,j=1...n

has full

rank on the zero set Z = {z ∈ X|f1(z) = . . . fr(z) = 0}. Then,

• Z is a regularly embedded submanifold with Hq(Z,O) = 0 for all q > 0;

• Each f ∈ O(Z) is the restricting of some F ∈ O(X).
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Define O∗ to be the sheaf of non-vanishing holomorphic functions and defineM∗ to be
the sheaf of meromorphic functions which are not identically 0. The quotient sheafM∗/O∗
is again defined by the following exact sequence of sheaves:

0→ O∗ ↪→M∗ →M∗/O∗ → 0.

Global sections of M∗/O∗ are called (Cartier) divisors. A divisor α is integral if it has no
poles, and it is principal if there is a meromorphic f ∈M∗(X) such that (f) = α.

The multiplicative Cousin problem can be formulated in four different, yet equivalent
ways:

2nd Cousin Problem:

• Given an open cover U = {Ui} of X and meromorphic functions Fj ∈ M(Uj) such
that Fj/Fk ∈ O(Ujk), can we find a global meromorphic function F ∈ M∗(X) such
that F/Fj ∈ O∗(Uj) for all j?

• Is the induced projection map H0(X,M∗)→ H0(X,M∗/O∗) surjective ?

• Is H1(X,O∗) = 0?

• Is every divisor principal?

Lemma 2.3.7. If every integral divisor on X is principal, then the multiplicative Cousin
problem is always solvable.

Solvability of the 2nd Cousin problem has important consequences.

Theorem 2.3.8. Suppose the multiplicative Cousin problem is always solvable.

1. For every F ∈M(X), then F = f/g for some f, g ∈ O(X);

2. Every regular hypersurface admits a global defining function φ ∈ O(X).

The exponential map induces the following exact sequence:

0→ Z ↪→ O → O∗ → 0.

Theorem 2.3.9 (Serre). The multiplicative Cousin problem is solvable if H1(X,O) =
H2(X,Z) = 0.

Example 5. The multiplicative Cousin problem is solvable when X = D1 × . . . Dn is a
product of n simply connected domains Dj ⊂ C.

The multiplicative Cousin problem may not be solvable even on domains of holomorphy.
This is demonstrated by Poincaré’s example where the space is

X = {(z, w) ∈ C2 : 0.75 < |z|, |w| < 1.25}.
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2.4 Differential Forms

Lemma 2.4.1 (Poincaré Lemmas).

1. Every d-closed smooth r-form on the unit open square (−1, 1)n ⊂ Rn is d-exact;

2. Every d-closed holomorphic r-form on the unit polydisk Dn ⊂ Cn is d-exact;

3. Every ∂̄-closed smooth (p, q)-form on the unit polydisk is ∂̄-exact.

Corollary 2.4.2. Let X be an n-dimensional complex manifold, Ak, Ωk, and Ap,q be the
space of all smooth k-forms, holomorphic k-forms, and smooth (p, q)-forms respectively.
We have the following exact sequence of sheaves.

0 ↪→ C ↪→ A0 d−→ A1 d−→ A2 . . .An → 0

0 ↪→ C ↪→ Ω0 d−→ Ω1 d−→ Ω2 . . .Ωn → 0

0 ↪→ O ↪→ A0,0 ∂̄−→ A0,1 ∂̄−→ A0,2 . . .A0,n → 0

0 ↪→ Ωp ↪→ Ap,0 ∂̄−→ Ap,1 ∂̄−→ Ap,2 . . .Ap,n → 0.

Theorem 2.4.3 (de Rham’s Theorem). Let a sheaf S on a space X admit a resolution,

i.e. an exact sequence 0→ S
φ−1−−→ A0

φ0−→ A1 . . . such that Hq(X,Aj) = 0 for all j ≥ 0 and
q > 0. Then, for all p > 0, Hp(X,S) is isomorphic to Ker(φ∗p)/Im(φ∗p−1).

By the use of partition of unity, we see that the sheaves Ak and Ap,q are all fine, so
Hk(X,Ak) = Hq(X,Ap,q) = 0 for all k, q > 0.

Corollary 2.4.4. For any smooth manifold X, Hp
dR(X,R) is isomorphic to Hp(X,R).

Corollary 2.4.5 (Dolbeault’s Theorem). For any complex manifold X, we have the fol-
lowing isomorphisms

• Hq(X,O) = Ker(∂̄ : A0,q → A0,q+1)/∂̄(Ap,q−1);

• Hq(X,Ωp) = Ker(∂̄ : Ap,q → Ap,q+1)/∂̄(Ap,q−1).
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2.5 Polynomial and Analytic Polyhedra

An open subset X of Cn is a Runge region if it is a region of holomorphy such that every
f ∈ O(X) can be normally approximated by polynomials.

Theorem 2.5.1 (Oka-Weil 1). Let X be a polynomial polyhedron, i.e. of the form
⋂r
j=1 p

−1
j (D)

for some polynomials p1, . . . pj in Cn. Then,

• Hq(X,O) = 0 for all q > 0;

• X is a Runge region.

The theorem above uses Lemma A on the regular submanifold

{(z, ζ) ∈ Dn+r | ζj = pj(z) for all j = 1 . . . r}

after assuming that X is contained in the unit polydisk Dn.
An open subset Y of a complex manifold X is Runge (rel X) if each f ∈ O(Y ) can be

normally approximated by functions in O(X). Using techniques similar to the ∂̄-Poincaré
lemma, we have the following.

Lemma 2.5.2 (Lemma B). Let X ∈ Cn be an open subset with exhaustion X1 b X2 b
X3 . . . such that Hq(Xj ,O) = 0 for all q > 0 and each Xj is Runge rel Xj+1. Then,
Hq(X,O) = 0 for all q > 0 and each Xj is Runge rel X.

Polynomially convex domains in C are those whose complement has no bounded com-
ponents. Indeed, by the maximum principle, the polynomial hull of any compact subset
K ⊂ C is the union of K and all the bounded components of C\K. In higher dimensions,
polynomial convexity is much more subtle.

Theorem 2.5.3. Let X be an open subset of Cn. The following are equivalent:

1. X is polynomially convex;

2. X can be exhausted by polynomial polyhedra in D;

3. X is a Runge region.

An open set X is an analytic polyhedron in a larger open set D ⊂ Cn if there are some
f1, . . . fr ∈ O(D) such that A =

⋂r
j=1 f

−1
j (D) b D.

Proposition 2.5.4. Every analytic polyhedron is a region of holomorphy. Conversely,
every region of holomorphy D can be exhausted by analytic polyhedra in D.

Lemma 2.5.5 (Fundamental Lemma). Let X be an analytic polyhedron in D defined by
f1, fr. The Oka image Σ = {(z, f1(z), . . . fr(z)) ∈ Cn+r | z ∈ X̄} is polynomially convex.
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By the fundamental lemma and lemma A,

Theorem 2.5.6 (Oka-Weil 2). Let X be an analytic polyhedron in D ⊂ Cn defined by
f1, . . . fr. Then,

• Hq(X,O) = 0 for all q > 0;

• Every f ∈ O(X) can be normally approximated by polynomials in z, f1(z), . . . fr(z).
In particular, X is Runge rel D.

Combining lemma B, Oka-Weil, and Cartan’s theorem, we have a slick characterisation
of regions of holomorphy using sheaf cohomology.

Corollary 2.5.7. D is a region of holomorphy if and only if Hq(D,O) = 0 for all q > 0.

We also have an analog of Theorem 2.5.3.

Theorem 2.5.8. Let X ⊂ D ⊂ Cn be open sets. The following are equivalent:

1. X is O(D)-convex;

2. X can be exhausted by analytic polyhedra in X;

3. X is a region of holomorphy and it is Runge rel D.
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2.6 Review Questions

1. What is a domain of holomorphy? What are other equivalent ways of defining it?

2. What is a subharmonic function? What are other equivalent ways of defining it?

3. Given a Taylor series about 0, what can you say about the domain of convergence?

4. Given a Laurent series centered at 0, what can you say about the domain of conver-
gence?

5. Given a domain in Cn, is it pseudoconvex or strictly pseudoconvex? If so, construct
an appropriate plurisubharmonic exhaustion.

6. Given an additive Cousin data, does there exist a solution?

7. If H1(X,O) 6= 0 for some domain X, is it finite dimensional?

8. On a given domain X, does every ∂̄-problem have a solution?

9. What is an example of an unsolvable multiplicative Cousin data on a domain of
holomorphy?


