What is... an orbifold?

Willie Rush Lim

Graduate Student Seminar

26 Feb 2021

Recall...

Theorem

If M is a smooth manifold and a subgroup G of Diff(M) acts freely and properly discontinuously on M, then M/G is a smooth manifold.

What happens if our group G does not act freely?

Examples

•
$$S^n/\{\pm Id\} = \mathbb{RP}^n$$

- $\mathbb{R}^n/\mathsf{lattice} = \mathbb{T}^n$
- $\mathbb{C}\setminus\{0\}/\langle iz\rangle=$ infinite cylinder
- $\mathbb{C}/\langle iz \rangle$ = not a manifold...

What are orbifolds?

Definition

An *n*-dimensional smooth **orbifold** O is a Hausdorff paracompact space locally homeomorphic to \mathbb{R}^n /finite group.

More precisely, O admits

- an open cover $\{U_i\}$,
- ullet finite groups Γ_i acting smoothly on open subsets $V_i\subset \mathbb{R}^n$,
- homeomorphisms $\phi_i: U_i \to V_i/\Gamma_i$,

satisfying certain compatibility conditions.

Main property

Proposition

If M is a smooth manifold and a subgroup G of Diff(M) acts properly discontinuously on M, then M/G is a smooth orbifold.

Examples

- Every manifold is trivially an orbifold.
- $\mathbb{C}/\langle e^{2\pi i/n}z\rangle$ = infinite cone of order n.
- \mathbb{C}/D_{2n} = infinite wedge with a corner reflector of order n.
- $\mathbb{T}^d/\mathsf{Sym}_d = \mathsf{Mobius}$ strip with mirror boundary if d=2

Examples

• $\mathbb{H}^2/\{\frac{az+b}{cz+d}\mid\begin{pmatrix} a&b\\c&d\end{pmatrix}\in SL(2,\mathbb{Z})\}=$ topological disk with 2 cone points of orders 2 and 3.

Reduction

Proposition

Every orbifold O is locally homeomorphic to \mathbb{R}^n/Γ where Γ is some finite subgroup of O(n).

- For n = 1, $\Gamma = \{Id\}, \{\pm Id\}$.
- For n = 2, $\Gamma = \{Id\}, D_{2n}$, or C_n (Da Vinci's Theorem)

Covering Space Theory

Definition

An **orbifold covering map** $f: O \to P$ is a continuous surjection where every $y \in P$ admits a neighbourhood V such that $f^{-1}(V)$ is a disjoint union of open sets $\{U_i\}$ such that $f: U_i \to V$ is a "quotient map" between two quotients of \mathbb{R}^n by finite groups.

The **orbifold universal covering map** \tilde{O} can be defined by the usual universal property. O is **good** if \tilde{O} is a manifold, **evil** if otherwise.

The **orbifold fundamental group** of O is defined as the deck transformations of $\tilde{O} \to O$.

Euler Characteristic

Definition

Build a finite CW complex structure on a 2-D compact orbifold O such that every singular point/mirror is a cell. The **Euler characteristic** of a compact 2-D orbifold O is defined as

$$\chi(O) = \sum_{\mathsf{cell}} \frac{(-1)^{\mathsf{dim}(c)}}{|\Gamma_c|}.$$

Riemann-Hurwitz Formula

If $O \to P$ is an orbifold covering map of degree d, $\chi(O) = d\chi(P)$.

Further Reduction

- If the orbifold O has topological boundary, consider the double O_d .
- There's a natural orbifold double covering $O_d \rightarrow O$.
- The boundary of O acts as an axis of reflection.

• To classify all 2-D compact orbifolds, we may as well assume O has no topological boundary and the only singularities are cone points.

Classification of 2-D Compact Orbifolds

Туре	Universal Cover	Topology	Cone Singularities of order $(m_1, \dots m_N)$
Evil		S ²	$(m), (m_1, m_2) [m_1 \neq m_2]$
Elliptic	S ²	<i>S</i> ²	$(), (m, m), (2, 2, m), (2, 3, k) [3 \le k \le 5]$
$(\chi > 0)$		\mathbb{RP}^2	(), (m)
Parabolic $(\chi = 0)$	\mathbb{R}^2	<i>S</i> ²	(2,2,2,2), (2,3,6), (2,4,4), (3,3,3)
		\mathbb{RP}^2	(2,2)
		\mathbb{T}^2	()
		Klein B	()

If O is neither of the above, O is hyperbolic $(\chi(O) < 0$ and covered by \mathbb{H}^2).

Thank you!