Herman Rings: A Priori Bounds and Degeneration

Willie Rush Lim

Advisor: Dzmitry Dudko

A Priori Bounds

Let $\theta = [0; a_1, a_2, \ldots]$ be a bounded type irrational number. By the works of Douady [Dou87], Ghys [Ghy84], Herman [Her86], Swiatek [Swi88], Shishikura, and Zhang [Zha08], we know that the boundary of a fixed Siegel disk of a rational map of rotation number θ is a quasicircle containing a critical point with dilatation depending only on the degree and $\eta(\theta) := \max_{i>1} a_i$.

Question 1

Can we say the same for Herman rings?

Shishikura's surgery [Shi87] gives a way to construct a Herman ring out of two Siegel disks. With this procedure, the dilatation of the boundary components of any fixed Herman ring of a rational map generally depends on the degree, $\eta(\theta)$, and the modulus.

Let $\mathcal{H}_{d_0,d_\infty,\theta}\subset \operatorname{Rat}_{d_0+d_\infty-1}$ denote the space of all rational maps f obtained from Shishikura's surgery applied to two polynomials P_0 and P_∞ of degrees d_0 and d_∞ having fixed Siegel disks Z_0 and Z_∞ of rotation numbers θ and $1-\theta$ such that all finite critical points lie on ∂Z_0 and ∂Z_∞ respectively.

In [Lim22], we answer Question 1 for $\mathcal{H}_{d_0,d_\infty, heta}$:

Theorem A

The boundary components of the Herman ring of every rational map in $\mathcal{H}_{d_0,d_\infty,\theta}$ are quasicircles with dilatation depending only on d_0 , d_∞ and $\eta(\theta)$.

Figure X: Examples of non-trivial Herman quasicircles.

The figure shows the Julia sets of $f(z)=\alpha z^3(z-4)/(6z^2-4z+1)$ on the left and $g(z)=\beta z^2(z^3-5z^2+10z-10)/(5z-1)$ on the right. Both have a unique free critical point at z=1. The coefficients $\alpha\approx 1.14421+0.96445i$ and $\beta\approx 0.38663+0.32050i$ are determined numerically such that f and g admit Herman quasicircles (shown in red) passing through 1 of golden mean rotation number $\theta=\frac{\sqrt{5}-1}{2}$.

Near-Degenerate Regime

Let H be a component of $\partial \mathbb{H}$. The conjugacy between $f|_H$ and the rigid rotation $R_{\theta}|_{S^1}$ gives rise to a combinatorial metric on H.

Let I be an interval in H of (combinatorial) length |I| < 0.1. Following [DL22], we denote by $W_{10}(I)$ the extremal width of curves connecting I and $H \setminus 10I$, where 10I is the interval of length 10|I| having the same midpoint as I.

small $W_{10}(I)$

large $W_{10}(I)$

 $W_{10}(I)$ tells us how close H is to degeneracy (as a quasicircle) near I. To prove Theorem A, it is sufficient to show that every interval $I \subset H$ satisfies $W_{10}(I) \leq K$ for some bound K depending only on d_0 , d_∞ , and $\eta(\theta)$. Our goal is reduced to showing:

"There is some $K = K(d_0, d_\infty, \eta(\theta)) > 0$ such that if there is an interval I with $W_{10}(I) > K$, then there is another interval J such that $W_{10}(J) > 2K$."

The proof of such uses renormalisation and many facets of Kahn's near-degenerate regime: non-intersecting principle, quasi-additivity law, covering lemma, and canonical weighted arc diagrams. Many of our steps are inspired by [KL05, Kah06, DL22].

Herman Curves

An invariant Jordan curve $\mathbf{H} \subset \hat{\mathbb{C}}$ of a rational map f is a **Herman curve** if

 $\triangleright f|_{\mathbf{H}}$ is conjugate to a rigid rotation on the S^1 , and $\triangleright \mathbf{H}$ is not contained in the closure of a rotation domain of f.

Additionally, we call \mathbf{H} a **Herman quasicircle** if it is a quasicircle. The combinatorics of \mathbf{H} is encoded by the criticality and relative combinatorial position of the critical points on \mathbf{H} .

The following question was posed by Eremenko:

Question 2

Does there exist Herman curves that are non-trivial, i.e. not induced by Blaschke products (in which case **H** is the unit circle) nor quasiconformal deformations of such?

Degenerating Herman Rings

A priori bounds gives us pre-compactness to study the dynamics for the limit space

$$\mathcal{G}_{d_0,d_\infty, heta}:=\overline{\mathcal{H}_{d_0,d_\infty, heta}}ackslash\mathcal{H}_{d_0,d_\infty, heta}.$$

Take a normalised family $\{f_{\mu}\}_{0<\mu\leq 1}$ in $\mathcal{H}_{d_0,d_{\infty},\theta}$ where f_{μ} has Herman ring of modulus μ and the same combinatorics. We can let $\mu\to 0$ and obtain a Herman curve of the same combinatorics.

Theorem B

Every $f \in \mathcal{G}_{d_0,d_\infty,\theta}$ admits a Herman quasicircle \mathbf{H} of rotation number θ containing every critical point of f other than 0 and ∞ . Its dilatation depends only on d_0, d_∞ , and $\eta(\theta)$.

Given any combinatorial data, there exists a Herman quasicircle \mathbf{H} from the space $\mathcal{G}_{d_0,d_\infty,\theta}$ realising such prescribed combinatorics.

This answers Question 2! See Figure X.

Open Questions

- \triangleright For $f \in \mathcal{G}_{d_0,d_\infty,\theta}$, does J(f) have zero area or Hausdorff dimension < 2?
- \triangleright Can we extend our results to θ of unbounded type?

References

- [Dou87] Adrien Douady, *Disques de Siegel et anneaux de Herman*, Séminaire Bourbaki : vol. 1986/87, exposés 669-685, Astérisque, no. 152-153, Soc. Math. Fr., 1987.
- [DL22] Dzmitry Dudko and Mikhail Lyubich, *Uniform a priori bounds for neutral renormalization*, Manuscript, 2022.
- [Ghy84] Étienne Ghys, *Transformations holomorphes au voisinage d'une courbe de Jordan*, C. R. Acad. Sci. Paris 298 (1984), 385–388.
- [Her86] Michael Herman, Conjugaison quasi-symétrique des homeomorphismes analytiques du cercels à des rotations, Manuscript, 1986.
- [Kah06] Jeremy Kahn, A priori bounds for some infinitely renormalizable quadratics: I. bounded primitive combinatorics, arXiv:math/0609045v2, 2006.
- [KL05] Jeremy Kahn and Mikhail Lyubich, *The quasi-additivity law in conformal geometry, Ann. Math. 169 (2005)..*
- [Lim22] Willie Rush Lim, *A priori bounds of bounded type Herman rings*, Manuscript, 2022.
- [Shi87] Mitsuhiro Shishikura, On the quasiconformal surgery of rational functions, Ann. Sci. Éc. Norm. Supér. Ser. 4, 20 (1987).
- [Swi88] Grzegorz Świątek, *On critical circle homeomorphisms*, Bol. Soc. Bras. Mat. 29 (1988), 329–351.
- [Zha08] Gaofei Zhang, All bounded type Siegel disks of rational maps are quasi-disks, Invent. Math. 185 (2008).