From Herman rings to Herman curves

Willie Rush Lim

Stony Brook University

Rotation domains

Let $f \in \operatorname{Rat}_d$ be a degree $d \ge 2$ rational map. A maximal invariant domain $U \subset \hat{\mathbb{C}}$ is a rotation domain if $f|_U$ is conjugate to a rigid rotation. There are 2 types:

- U is simply connected, i.e. a Siegel disk;
- **2** U is an annulus, i.e. a Herman ring.

Rotation domains

Let $f \in \text{Rat}_d$ be a degree $d \ge 2$ rational map. A maximal invariant domain $U \subset \hat{\mathbb{C}}$ is a rotation domain if $f|_U$ is conjugate to a rigid rotation. There are 2 types:

- U is simply connected, i.e. a Siegel disk;
- **2** U is an annulus, i.e. a Herman ring.

The two can be converted into one another via quasiconformal surgery. (Shishikura '87)

Bounded type rotation domains

Assume from now on that $\theta \in (0, 1)$ is an irrational number of bounded type, i.e. there is some $B \in \mathbb{N}$ such that $\sup_n a_n \leq B$ where $\theta = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}}$.

Bounded type rotation domains

Assume from now on that $\theta \in (0, 1)$ is an irrational number of bounded type, i.e. there is some $B \in \mathbb{N}$ such that $\sup_n a_n \leq B$ where $\theta = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}}$.

Theorem (Zhang '11)

Every invariant Siegel disk of a map $f \in Rat_d$ with rotation number θ is a K(d, B)-quasidisk containing a critical point on the boundary.

Bounded type rotation domains

Assume from now on that $\theta \in (0, 1)$ is an irrational number of bounded type, i.e. there is some $B \in \mathbb{N}$ such that $\sup_n a_n \leq B$ where $\theta = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}}$.

Theorem (Zhang '11)

Every invariant Siegel disk of a map $f \in Rat_d$ with rotation number θ is a K(d, B)-quasidisk containing a critical point on the boundary.

Applying Shishikura's surgery, we have:

Corollary

Every boundary component of an invariant Herman ring of $f \in Rat_d$ with rotation number θ and modulus μ is a $K(d, B, \mu)$ -quasicircle containing a critical point.

Proposition

 $\mathcal{H}_{d_0,d_{\infty},\theta}$ consists of all rational maps that can be obtained from Shishikura surgery out of a pair of maps P_0 , P_{∞} such that for $\star \in \{0,\infty\}$,

- P_{\star} is a degree d_{\star} polynomial;
- P_{*} has a Siegel disk Z_{*};
- $rot(Z_0) = \theta$ and $rot(Z_\infty) = -\theta$;

• all free critical points of P_* lie in ∂Z_* .

An invariant curve $X \subset \hat{\mathbb{C}}$ of a holomorphic map f is a rotation curve if $f|_X$ is conjugate to irrational rotation.

If X is not contained in the closure of a rotation domain, we call it a Herman curve.

An invariant curve $X \subset \hat{\mathbb{C}}$ of a holomorphic map f is a rotation curve if $f|_X$ is conjugate to irrational rotation.

If X is not contained in the closure of a rotation domain, we call it a Herman curve.

Proposition (Trichotomy)

When the rotation number of $f|_X$ is of bounded type, there are 3 possibilities:

- a. X is an analytic curve contained in a rotation domain,
- b. X is the boundary of a rotation domain containing a critical point of f,
- h. X is a Herman curve containing a critical point of f.

A trivial Herman curve

For any irrational θ , there is a unique $\zeta_{\theta} \in \mathbb{T}$ such that the unit circle is a Herman curve of rotation number θ for the map

С

$$f_{\theta}(z) = \zeta_{\theta} z^2 \frac{2-3}{1-3z}.$$

A trivial Herman curve

For any irrational θ , there is a unique $\zeta_{\theta} \in \mathbb{T}$ such that the unit circle is a Herman curve of rotation number θ for the map

Question: Can non-trivial Herman curves exist?

<u>Step 1:</u> Use a priori bounds. For any $\varepsilon > 0$, the family

$$\{f \in \mathcal{H}_{d_0, d_{\infty}, \theta} : \mathsf{mod}(\mathbb{H}) < \varepsilon\}/_{\widetilde{conf}}$$

is precompact inside $\operatorname{Rat}_{d_0+d_\infty-1}/_{\operatorname{conf}}$.

<u>Step 1:</u> Use a priori bounds. For any $\varepsilon > 0$, the family

$$\{f \in \mathcal{H}_{d_0, d_{\infty}, \theta} : \mathsf{mod}(\mathbb{H}) < \varepsilon\}/{\sim conf}$$

is precompact inside $\operatorname{Rat}_{d_0+d_\infty-1}/_{\underset{\operatorname{conf}}{\sim}}$.

Step 2: Use a Thurston-type result for Herman rings (Wang '12).

There is some $f_1 \in \mathcal{H}_{d_0, d_\infty, \theta}$ having a Herman ring with combinatorics similar to the chosen one.

<u>Step 1:</u> Use a priori bounds. For any $\varepsilon > 0$, the family

$$\{f \in \mathcal{H}_{d_0, d_{\infty}, \theta} : \mathsf{mod}(\mathbb{H}) < \varepsilon\}/{\sim conf}$$

is precompact inside $\operatorname{Rat}_{d_0+d_\infty-1}/_{\operatorname{conf}}$.

Step 2: Use a Thurston-type result for Herman rings (Wang '12).

There is some $f_1 \in \mathcal{H}_{d_0, d_\infty, \theta}$ having a Herman ring with combinatorics similar to the chosen one.

Step 3: Apply QC deformation.

There is a normalized family of maps $\{f_t\}_{0 < t \leq 1}$ in $\mathcal{H}_{d_0, d_\infty, \theta}$ of the same combinatorics, with modulus $\to 0$ as $t \to 0$.

<u>Step 1:</u> Use a priori bounds. For any $\varepsilon > 0$, the family

$$\{f \in \mathcal{H}_{d_0, d_{\infty}, \theta} : \mathsf{mod}(\mathbb{H}) < \varepsilon\}/{\sim \atop \mathsf{conf}}$$

is precompact inside $\operatorname{Rat}_{d_0+d_\infty-1}/_{\underset{\operatorname{conf}}{\sim}}$.

Step 2: Use a Thurston-type result for Herman rings (Wang '12).

There is some $f_1 \in \mathcal{H}_{d_0, d_\infty, \theta}$ having a Herman ring with combinatorics similar to the chosen one.

Step 3: Apply QC deformation.

There is a normalized family of maps $\{f_t\}_{0 < t \leq 1}$ in $\mathcal{H}_{d_0, d_\infty, \theta}$ of the same combinatorics, with modulus $\to 0$ as $t \to 0$.

<u>Result</u>: Limit f_0 of f_t exists and $f_0 \in \mathcal{H}^{\partial}_{d_0, d_{\infty}, \theta}$ has the same combinatorics as f_1 .

Step 1: Apply pullback argument.

Combinatorial equivalence implies QC conjugacy that is conformal in the Fatou set.

Rigidity of $\mathcal{X}_{d_0,d_\infty,\theta}$

Step 1: Apply pullback argument.

Combinatorial equivalence implies QC conjugacy that is conformal in the Fatou set.

Step 2: Small Julia sets everywhere.

For any $z \in J(f)$ and scale s > 0, there is a univalent

 $f^k: \mathbb{D}(y, r) \to \mathbb{C}$

where $f^{k}(y)$ is a critical point, |y - z| = O(s), and $r \asymp s$.

Rigidity of $\mathcal{X}_{d_0,d_\infty,\theta}$

Step 1: Apply pullback argument.

Combinatorial equivalence implies QC conjugacy that is conformal in the Fatou set.

Step 2: Small Julia sets everywhere.

For any $z \in J(f)$ and scale s > 0, there is a univalent

 $f^k: \mathbb{D}(y, r) \to \mathbb{C}$

where $f^k(y)$ is a critical point, |y - z| = O(s), and $r \asymp s$.

Step 3: No invariant line fields.

By pulling back first return maps about any critical point via Step 2, we have robust non-linearity everywhere on J(f).

Rigidity of $\mathcal{X}_{d_0,d_\infty,\theta}$

Step 1: Apply pullback argument.

Combinatorial equivalence implies QC conjugacy that is conformal in the Fatou set.

Step 2: Small Julia sets everywhere.

For any $z \in J(f)$ and scale s > 0, there is a univalent

 $f^k: \mathbb{D}(y, r) \to \mathbb{C}$

where $f^k(y)$ is a critical point, |y - z| = O(s), and $r \asymp s$.

Step 3: No invariant line fields.

By pulling back first return maps about any critical point via Step 2, we have robust non-linearity everywhere on J(f).

Result: Conformal conjugacy!

Non-trivial examples of golden mean Herman curves

Let *H* be a boundary component of the Herman ring of $f \in \mathcal{H}_{d_0, d_{\infty}, \theta}$. Endow *H* with the combinatorial metric. Let *H* be a boundary component of the Herman ring of $f \in \mathcal{H}_{d_0, d_{\infty}, \theta}$. Endow *H* with the combinatorial metric.

I = an interval in H of (combinatorial) length |I| < 0.1. 10I = the interval of length 10|I| having the same midpoint as I. $W_{10}(I) =$ the extremal width of curves connecting I and $H \setminus 10I$. Let *H* be a boundary component of the Herman ring of $f \in \mathcal{H}_{d_0, d_\infty, \theta}$. Endow *H* with the combinatorial metric.

I = an interval in H of (combinatorial) length |I| < 0.1. 10I = the interval of length 10|I| having the same midpoint as I. $W_{10}(I) =$ the extremal width of curves connecting I and $H \setminus 10I$.

 $W_{10}(I)$ encodes the local (near-)degeneration of H near the interval I.

Near-Degenerate Regime

To prove a priori bounds, it is sufficient to find some ε and K > 1 depending only on d_0, d_∞, B such that:

```
every interval I \subset H of length |I| < \varepsilon satisfies W_{10}(I) < K.
```

Near-Degenerate Regime

To prove a priori bounds, it is sufficient to find some ε and K > 1 depending only on d_0, d_{∞}, B such that:

```
every interval I \subset H of length |I| < \varepsilon satisfies W_{10}(I) < K.
```

Our goal is reduced to showing:

```
Theorem (Amplification)
```

lf

there is an interval $I \subset H$ with length $|I| \ll 1$ and width $W_{10}(I) = K \gg 1$, then

there is another interval $J \subset H$ with length $|J| \ll 1$ and width $W_{10}(J) \ge 2K$.

(All bounds depend only on B, d_0, d_∞ .)

To prove a priori bounds, it is sufficient to find some ε and K > 1 depending only on d_0, d_{∞}, B such that:

```
every interval I \subset H of length |I| < \varepsilon satisfies W_{10}(I) < K.
```

Our goal is reduced to showing:

```
Theorem (Amplification)
```

lf

there is an interval $I \subset H$ with length $|I| \ll 1$ and width $W_{10}(I) = K \gg 1$, then

there is another interval $J \subset H$ with length $|J| \ll 1$ and width $W_{10}(J) \ge 2K$.

(All bounds depend only on B, d_0, d_∞ .)

The proof relies on the near-degenerate machinery, including ideas from: Kahn-Lyubich '05, Kahn '06, and Dudko-Lyubich '22.

What's next?

Let F_c be the rational map with critical points $0, \infty, 1$ of local degrees $d_0, d_\infty, d_0 + d_\infty - 1$, satisfying $f(0) = 0, f(\infty) = \infty, f(1) = c$.

<u>Conjecture</u>: Bifurcation locus of $\{F_c\}$ is self-similar at the unique parameter c_* where F_{c_*} has a golden mean Herman curve.

Bifurcation locus for $d_0 = 2, d_{\infty} = 4$ magnified around c_{\star} at different scales.

() Can we describe $\mathcal{X}_{d_0,d_{\infty},\theta}$ when θ is of unbounded type?

• Can we describe $\mathcal{X}_{d_0,d_{\infty},\theta}$ when θ is of unbounded type? \Rightarrow For $d_0 = d_{\infty} = 2$ and high type θ , there exist smooth Herman curves. [Fei Yang '22]

- Quantum Can we describe X_{d0,d∞}, θ when θ is of unbounded type?
 ⇒ For d₀ = d_∞ = 2 and high type θ, there exist smooth Herman curves. [Fei Yang '22]
- Is every limit of degenerating Herman rings always a Herman curve?

- Can we describe X_{d₀,d_∞,θ} when θ is of unbounded type?
 ⇒ For d₀ = d_∞ = 2 and high type θ, there exist smooth Herman curves. [Fei Yang '22]
- Is every limit of degenerating Herman rings always a Herman curve?
- S Is every Herman curve a limit of degenerating Herman rings?

- Can we describe X_{d₀,d_∞,θ} when θ is of unbounded type?
 ⇒ For d₀ = d_∞ = 2 and high type θ, there exist smooth Herman curves. [Fei Yang '22]
- Is every limit of degenerating Herman rings always a Herman curve?
- S Is every Herman curve a limit of degenerating Herman rings?
- For $f \in \mathcal{X}_{d_0, d_\infty, \theta}$, is it true that Leb J(f) = 0? dim_HJ(f) < 2?

Thank you!