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Rotation domains

Let f ∈ Ratd be a degree d ≥ 2 rational map. A maximal invariant domain U ⊂ Ĉ is a
rotation domain if f |U is conjugate to a rigid rotation. There are 2 types:

1 U is simply connected, i.e. a Siegel disk;

2 U is an annulus, i.e. a Herman ring.

The two can be converted into one another via quasiconformal surgery. (Shishikura ’87)
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Bounded type rotation domains

Assume from now on that θ ∈ (0, 1) is an irrational number of bounded type,

i.e. there is some B ∈ N such that supn an ≤ B where θ =
1

a1 +
1

a2+
1

a3+...

.

Theorem (Zhang ’11)

Every invariant Siegel disk of a map f ∈ Ratd with rotation number θ
is a K(d ,B)-quasidisk containing a critical point on the boundary.

Applying Shishikura’s surgery, we have:

Corollary

Every boundary component of an invariant Herman ring of f ∈ Ratd with
rotation number θ and modulus µ is a K(d ,B, µ)-quasicircle containing a critical point.
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Characterization of Hd0,d∞,θ

Proposition

Hd0,d∞,θ consists of all rational maps that can be obtained from Shishikura surgery
out of a pair of maps P0, P∞ such that for ⋆ ∈ {0,∞},

P⋆ is a degree d⋆ polynomial;

P⋆ has a Siegel disk Z⋆;

rot(Z0) = θ and rot(Z∞) = −θ;

all free critical points of P⋆ lie in ∂Z⋆.
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Rotation curves

An invariant curve X ⊂ Ĉ of a holomorphic map f is a rotation curve if f |X is conjugate
to irrational rotation.

If X is not contained in the closure of a rotation domain, we call it a Herman curve.

Proposition (Trichotomy)

When the rotation number of f |X is of bounded type, there are 3 possibilities:

a. X is an analytic curve contained in a rotation domain,

b. X is the boundary of a rotation domain containing a critical point of f ,

h. X is a Herman curve containing a critical point of f .
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A trivial Herman curve

For any irrational θ, there is a unique ζθ ∈ T such that the unit circle is a Herman curve
of rotation number θ for the map

fθ(z) = ζθz
2 z − 3

1− 3z
.

Question: Can non-trivial Herman curves exist?
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Realization

Step 1: Use a priori bounds.

For any ε > 0, the family

{f ∈ Hd0,d∞,θ : mod(H) < ε}/ ∼
conf

is precompact inside Ratd0+d∞−1/ ∼
conf

.

Step 2: Use a Thurston-type result for Herman rings (Wang ’12).

There is some f1 ∈ Hd0,d∞,θ having a Herman ring with combinatorics similar to the
chosen one.

Step 3: Apply QC deformation.

There is a normalized family of maps {ft}0<t≤1 in Hd0,d∞,θ of the same combinatorics,
with modulus → 0 as t → 0.

Result: Limit f0 of ft exists and f0 ∈ H∂
d0,d∞,θ has the same combinatorics as f1.
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Rigidity of Xd0,d∞,θ

Step 1: Apply pullback argument.

Combinatorial equivalence implies QC conjugacy that is conformal in the Fatou set.

Step 2: Small Julia sets everywhere.

For any z ∈ J(f ) and scale s > 0, there is a univalent

f k : D(y , r) → C

where f k(y) is a critical point, |y − z | = O(s), and r ≍ s.

Step 3: No invariant line fields.

By pulling back first return maps about any critical point via Step 2, we have robust
non-linearity everywhere on J(f ).

Result: Conformal conjugacy!
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Non-trivial examples of golden mean Herman curves

f (z) = cz2
z3 − 5z2 + 10z − 10

5z − 1

c ≈ 0.3866 + 0.3205i

f (z) = z2
q − z

1 + q̄z

q ≈ −1.26 + 2.94i
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How to prove a priori bounds?

Let H be a boundary component of the Herman ring of f ∈ Hd0,d∞,θ.
Endow H with the combinatorial metric.

I = an interval in H of (combinatorial) length |I | < 0.1.
10I = the interval of length 10|I | having the same midpoint as I .
W10(I ) = the extremal width of curves connecting I and H\10I .

small W10(I ) large W10(I )

W10(I ) encodes the local (near-)degeneration of H near the interval I .
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Near-Degenerate Regime

To prove a priori bounds, it is sufficient to find some ε and K > 1 depending only on
d0, d∞,B such that:

every interval I ⊂ H of length |I | < ε satisfies W10(I ) < K.

Our goal is reduced to showing:

Theorem (Amplification)

If

there is an interval I ⊂ H with length |I | ≪ 1 and width W10(I ) = K ≫ 1,

then

there is another interval J ⊂ H with length |J| ≪ 1 and width W10(J) ≥ 2K.

(All bounds depend only on B, d0, d∞.)

The proof relies on the near-degenerate machinery, including ideas from:
Kahn-Lyubich ’05, Kahn ’06, and Dudko-Lyubich ’22.
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What’s next?

Let Fc be the rational map with critical points 0,∞, 1 of local degrees d0 ,d∞,
d0 + d∞ − 1, satisfying f (0) = 0, f (∞) = ∞, f (1) = c.

Conjecture: Bifurcation locus of {Fc} is self-similar at the unique parameter c⋆
where Fc⋆ has a golden mean Herman curve.

Bifurcation locus for d0 = 2, d∞ = 4 magnified around c⋆ at different scales.
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Open questions

1 Can we describe Xd0,d∞,θ when θ is of unbounded type?

⇒ For d0 = d∞ = 2 and high type θ, there exist smooth Herman curves.
[Fei Yang ’22]

2 Is every limit of degenerating Herman rings always a Herman curve?

3 Is every Herman curve a limit of degenerating Herman rings?

4 For f ∈ Xd0,d∞,θ, is it true that Leb J(f ) = 0? dimHJ(f ) < 2?
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Thank you!
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