From Herman rings to Herman curves

Willie Rush Lim

Stony Brook University

Rotation domains

Let $f \in$ Rat $_{d}$ be a degree $d \geq 2$ rational map. A maximal invariant domain $U \subset \widehat{\mathbb{C}}$ is a rotation domain if $\left.f\right|_{U}$ is conjugate to a rigid rotation. There are 2 types:
(1) U is simply connected, i.e. a Siegel disk;
(2) U is an annulus, i.e. a Herman ring.

Rotation domains

Let $f \in$ Rat $_{d}$ be a degree $d \geq 2$ rational map. A maximal invariant domain $U \subset \widehat{\mathbb{C}}$ is a rotation domain if $\left.f\right|_{U}$ is conjugate to a rigid rotation. There are 2 types:
(1) U is simply connected, i.e. a Siegel disk;
(2) U is an annulus, i.e. a Herman ring.

The two can be converted into one another via quasiconformal surgery. (Shishikura '87)

Bounded type rotation domains

Assume from now on that $\theta \in(0,1)$ is an irrational number of bounded type,
i.e. there is some $B \in \mathbb{N}$ such that $\sup _{n} a_{n} \leq B$ where $\theta=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\ldots}}}$.

Bounded type rotation domains

Assume from now on that $\theta \in(0,1)$ is an irrational number of bounded type,
i.e. there is some $B \in \mathbb{N}$ such that $\sup _{n} a_{n} \leq B$ where $\theta=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\ldots}}}$.

Theorem (Zhang '11)

Every invariant Siegel disk of a map $f \in R a t_{d}$ with rotation number θ is a $K(d, B)$-quasidisk containing a critical point on the boundary.

Bounded type rotation domains

Assume from now on that $\theta \in(0,1)$ is an irrational number of bounded type,
i.e. there is some $B \in \mathbb{N}$ such that $\sup _{n} a_{n} \leq B$ where $\theta=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\ldots}}}$.

Theorem (Zhang '11)

Every invariant Siegel disk of a map $f \in R a t_{d}$ with rotation number θ is a $K(d, B)$-quasidisk containing a critical point on the boundary.

Applying Shishikura's surgery, we have:

Corollary

Every boundary component of an invariant Herman ring of $f \in R a t_{d}$ with rotation number θ and modulus μ is a $K(d, B, \mu)$-quasicircle containing a critical point.

Characterization of $\mathcal{H}_{d_{0}, d_{\infty}, \theta}$

Proposition

$\mathcal{H}_{d_{0}, d_{\infty}, \theta}$ consists of all rational maps that can be obtained from Shishikura surgery out of a pair of maps P_{0}, P_{∞} such that for $\star \in\{0, \infty\}$,

- P_{\star} is a degree d_{\star} polynomial;
- P_{\star} has a Siegel disk Z_{\star};
- $\operatorname{rot}\left(Z_{0}\right)=\theta$ and $\operatorname{rot}\left(Z_{\infty}\right)=-\theta$;
- all free critical points of P_{\star} lie in ∂Z_{\star}.

Rotation curves

An invariant curve $X \subset \widehat{\mathbb{C}}$ of a holomorphic map f is a rotation curve if $\left.f\right|_{X}$ is conjugate to irrational rotation.

If X is not contained in the closure of a rotation domain, we call it a Herman curve.

Rotation curves

An invariant curve $X \subset \widehat{\mathbb{C}}$ of a holomorphic map f is a rotation curve if $\left.f\right|_{X}$ is conjugate to irrational rotation.

If X is not contained in the closure of a rotation domain, we call it a Herman curve.

Proposition (Trichotomy)

When the rotation number of $\left.f\right|_{X}$ is of bounded type, there are 3 possibilities:
a. X is an analytic curve contained in a rotation domain,
b. X is the boundary of a rotation domain containing a critical point of f,
h. X is a Herman curve containing a critical point of f.

A trivial Herman curve

For any irrational θ, there is a unique $\zeta_{\theta} \in \mathbb{T}$ such that the unit circle is a Herman curve of rotation number θ for the map

$$
f_{\theta}(z)=\zeta_{\theta} z^{2} \frac{z-3}{1-3 z}
$$

A trivial Herman curve

For any irrational θ, there is a unique $\zeta_{\theta} \in \mathbb{T}$ such that the unit circle is a Herman curve of rotation number θ for the map

$$
f_{\theta}(z)=\zeta_{\theta} z^{2} \frac{z-3}{1-3 z}
$$

Question: Can non-trivial Herman curves exist?

Realization

Step 1: Use a priori bounds.
For any $\varepsilon>0$, the family

$$
\left\{f \in \mathcal{H}_{d_{0}, d_{\infty}, \theta}: \bmod (\mathbb{H})<\varepsilon\right\} / \underset{\text { conf }}{\sim}
$$

is precompact inside $\operatorname{Rat}_{d_{0}+d_{\infty}-1} / \underset{\text { conf }}{\sim}$.

Realization

Step 1: Use a priori bounds.
For any $\varepsilon>0$, the family

$$
\left\{f \in \mathcal{H}_{d_{0}, d_{\infty}, \theta}: \bmod (\mathbb{H})<\varepsilon\right\} / \underset{\text { conf }}{\sim}
$$

is precompact inside Rat ${ }_{d_{0}+d_{\infty}-1} / \underset{\text { conf }}{\sim}$.

Step 2: Use a Thurston-type result for Herman rings (Wang '12).
There is some $f_{1} \in \mathcal{H}_{d_{0}, d_{\infty}, \theta}$ having a Herman ring with combinatorics similar to the chosen one.

Realization

Step 1: Use a priori bounds.
For any $\varepsilon>0$, the family

$$
\left\{f \in \mathcal{H}_{d_{0}, d_{\infty}, \theta}: \bmod (\mathbb{H})<\varepsilon\right\} / \underset{\text { conf }}{\sim}
$$

is precompact inside Rat ${ }_{d_{0}+d_{\infty}-1} / \underset{\text { conf }}{\sim}$.

Step 2: Use a Thurston-type result for Herman rings (Wang '12).
There is some $f_{1} \in \mathcal{H}_{d_{0}, d_{\infty}, \theta}$ having a Herman ring with combinatorics similar to the chosen one.

Step 3: Apply QC deformation.
There is a normalized family of maps $\left\{f_{t}\right\}_{0<t \leq 1}$ in $\mathcal{H}_{d_{0}, d_{\infty}, \theta}$ of the same combinatorics, with modulus $\rightarrow 0$ as $t \rightarrow 0$.

Realization

Step 1: Use a priori bounds.
For any $\varepsilon>0$, the family

$$
\left\{f \in \mathcal{H}_{d_{0}, d_{\infty}, \theta}: \bmod (\mathbb{H})<\varepsilon\right\} / \underset{\text { conf }}{\sim}
$$

is precompact inside Rat $_{d_{0}+d_{\infty}-1} / \underset{\text { conf }}{\sim}$.

Step 2: Use a Thurston-type result for Herman rings (Wang '12).
There is some $f_{1} \in \mathcal{H}_{d_{0}, d_{\infty}, \theta}$ having a Herman ring with combinatorics similar to the chosen one.

Step 3: Apply QC deformation.
There is a normalized family of maps $\left\{f_{t}\right\}_{0<t \leq 1}$ in $\mathcal{H}_{d_{0}, d_{\infty}, \theta}$ of the same combinatorics, with modulus $\rightarrow 0$ as $t \rightarrow 0$.

Result: Limit f_{0} of f_{t} exists and $f_{0} \in \mathcal{H}_{d_{0}, d_{\infty}, \theta}^{\partial}$ has the same combinatorics as f_{1}.

Rigidity of $\mathcal{X}_{d_{0}, d_{\infty}, \theta}$

Step 1: Apply pullback argument.
Combinatorial equivalence implies QC conjugacy that is conformal in the Fatou set.

Rigidity of $\mathcal{X}_{d_{0}, d_{\infty}, \theta}$

Step 1: Apply pullback argument.
Combinatorial equivalence implies QC conjugacy that is conformal in the Fatou set.

Step 2: Small Julia sets everywhere.
For any $z \in J(f)$ and scale $s>0$, there is a univalent

$$
f^{k}: \mathbb{D}(y, r) \rightarrow \mathbb{C}
$$

where $f^{k}(y)$ is a critical point, $|y-z|=O(s)$, and $r \asymp s$.

Rigidity of $\mathcal{X}_{d_{0}, d_{\infty}, \theta}$

Step 1: Apply pullback argument.
Combinatorial equivalence implies QC conjugacy that is conformal in the Fatou set.

Step 2: Small Julia sets everywhere.
For any $z \in J(f)$ and scale $s>0$, there is a univalent

$$
f^{k}: \mathbb{D}(y, r) \rightarrow \mathbb{C}
$$

where $f^{k}(y)$ is a critical point, $|y-z|=O(s)$, and $r \asymp s$.

Step 3: No invariant line fields.
By pulling back first return maps about any critical point via Step 2, we have robust non-linearity everywhere on $J(f)$.

Rigidity of $\mathcal{X}_{d_{0}, d_{\infty}, \theta}$

Step 1: Apply pullback argument.
Combinatorial equivalence implies QC conjugacy that is conformal in the Fatou set.

Step 2: Small Julia sets everywhere.
For any $z \in J(f)$ and scale $s>0$, there is a univalent

$$
f^{k}: \mathbb{D}(y, r) \rightarrow \mathbb{C}
$$

where $f^{k}(y)$ is a critical point, $|y-z|=O(s)$, and $r \asymp s$.

Step 3: No invariant line fields.
By pulling back first return maps about any critical point via Step 2, we have robust non-linearity everywhere on $J(f)$.

Result: Conformal conjugacy!

Non-trivial examples of golden mean Herman curves

How to prove a priori bounds?

Let H be a boundary component of the Herman ring of $f \in \mathcal{H}_{d_{0}, d_{\infty}, \theta}$. Endow H with the combinatorial metric.

How to prove a priori bounds?

Let H be a boundary component of the Herman ring of $f \in \mathcal{H}_{d_{0}, d_{\infty}, \theta}$. Endow H with the combinatorial metric.
$I=$ an interval in H of (combinatorial) length $|I|<0.1$. $10 I=$ the interval of length $10|I|$ having the same midpoint as I. $W_{10}(I)=$ the extremal width of curves connecting I and $H \backslash 10 I$.

How to prove a priori bounds?

Let H be a boundary component of the Herman ring of $f \in \mathcal{H}_{d_{0}, d_{\infty}, \theta}$. Endow H with the combinatorial metric.
$I=$ an interval in H of (combinatorial) length $|I|<0.1$.
$10 I=$ the interval of length $10|I|$ having the same midpoint as I. $W_{10}(I)=$ the extremal width of curves connecting I and $H \backslash 10 I$.

small $W_{10}(I)$

large $W_{10}(I)$
$W_{10}(I)$ encodes the local (near-)degeneration of H near the interval I.

Near-Degenerate Regime

To prove a priori bounds, it is sufficient to find some ε and $\mathbf{K}>1$ depending only on d_{0}, d_{∞}, B such that:
every interval $I \subset H$ of length $|I|<\varepsilon$ satisfies $W_{10}(I)<\mathbf{K}$.

Near-Degenerate Regime

To prove a priori bounds, it is sufficient to find some ε and $\mathbf{K}>1$ depending only on d_{0}, d_{∞}, B such that:

$$
\text { every interval } I \subset H \text { of length }|I|<\varepsilon \text { satisfies } W_{10}(I)<\mathbf{K} \text {. }
$$

Our goal is reduced to showing:
Theorem (Amplification)
If
there is an interval $I \subset H$ with length $|I| \ll 1$ and width $W_{10}(I)=K \gg 1$, then
there is another interval $J \subset H$ with length $|J| \ll 1$ and width $W_{10}(J) \geq 2 K$.
(All bounds depend only on B, d_{0}, d_{∞}.)

Near-Degenerate Regime

To prove a priori bounds, it is sufficient to find some ε and $\mathbf{K}>1$ depending only on d_{0}, d_{∞}, B such that:

$$
\text { every interval } I \subset H \text { of length }|I|<\varepsilon \text { satisfies } W_{10}(I)<\mathbf{K} \text {. }
$$

Our goal is reduced to showing:
Theorem (Amplification)
If
there is an interval $I \subset H$ with length $|I| \ll 1$ and width $W_{10}(I)=K \gg 1$, then
there is another interval $J \subset H$ with length $|J| \ll 1$ and width $W_{10}(J) \geq 2 K$.
(All bounds depend only on B, d_{0}, d_{∞}.)

The proof relies on the near-degenerate machinery, including ideas from: Kahn-Lyubich '05, Kahn '06, and Dudko-Lyubich '22.

What's next?

Let F_{c} be the rational map with critical points $0, \infty, 1$ of local degrees d_{0}, d_{∞}, $d_{0}+d_{\infty}-1$, satisfying $f(0)=0, f(\infty)=\infty, f(1)=c$.

Conjecture: Bifurcation locus of $\left\{F_{c}\right\}$ is self-similar at the unique parameter c_{\star} where $F_{c_{\star}}$ has a golden mean Herman curve.

Bifurcation locus for $d_{0}=2, d_{\infty}=4$ magnified around c_{\star} at different scales.

Open questions

(1) Can we describe $\mathcal{X}_{d_{0}, d_{\infty}, \theta}$ when θ is of unbounded type?

Open questions

(1) Can we describe $\mathcal{X}_{d_{0}, d_{\infty}, \theta}$ when θ is of unbounded type? \Rightarrow For $d_{0}=d_{\infty}=2$ and high type θ, there exist smooth Herman curves. [Fei Yang '22]

Open questions

(1) Can we describe $\mathcal{X}_{d_{0}, d_{\infty}, \theta}$ when θ is of unbounded type? \Rightarrow For $d_{0}=d_{\infty}=2$ and high type θ, there exist smooth Herman curves. [Fei Yang '22]
(3) Is every limit of degenerating Herman rings always a Herman curve?

Open questions

(1) Can we describe $\mathcal{X}_{d_{0}, d_{\infty}, \theta}$ when θ is of unbounded type? \Rightarrow For $d_{0}=d_{\infty}=2$ and high type θ, there exist smooth Herman curves. [Fei Yang '22]
(3) Is every limit of degenerating Herman rings always a Herman curve?

- Is every Herman curve a limit of degenerating Herman rings?

Open questions

(1) Can we describe $\mathcal{X}_{d_{0}, d_{\infty}, \theta}$ when θ is of unbounded type? \Rightarrow For $d_{0}=d_{\infty}=2$ and high type θ, there exist smooth Herman curves. [Fei Yang '22]
© Is every limit of degenerating Herman rings always a Herman curve?

- Is every Herman curve a limit of degenerating Herman rings?
- For $f \in \mathcal{X}_{d_{0}, d_{\infty}, \theta}$, is it true that Leb $J(f)=0$? $\operatorname{dim}_{H} J(f)<2$?

Thank you!

