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Complex dynamics

Complex dynamics = study of holomorphic self maps f of a complex manifold M

x 7→ f (x) 7→ f 2(x) 7→ f 3(x) 7→ . . .

Dichotomy:

Fatou set F (f ) = set of points z ∈ M near which {f n}n≥0 is normal,

Julia set J(f ) = M\F (f ).

In this talk, we take M = Ĉ and f ∈ Ratd is a degree d ≥ 2 rational map.

2 / 39



Complex dynamics

Complex dynamics = study of holomorphic self maps f of a complex manifold M

x 7→ f (x) 7→ f 2(x) 7→ f 3(x) 7→ . . .

Dichotomy:

Fatou set F (f ) = set of points z ∈ M near which {f n}n≥0 is normal,

Julia set J(f ) = M\F (f ).
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Rotation domains

A maximal invariant domain U ⊂ Ĉ of f is called a rotation domain if f |U is conjugate
to a rigid rotation. There are 2 types:

1 U is simply connected, i.e. a Siegel disk;

2 U is an annulus, i.e. a Herman ring.

f (z) = z2 + c where c ≈ −0.3905− 0.5868i

f (z) = e2πitz2
z − 4

1− 4z
where t ≈ 0.61517
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Bounded type assumption

Fix an irrational θ ∈ (0, 1) and assume it is of bounded type,
i.e. there is some B ∈ N such that supn an ≤ B where

θ = [0; a1, a2, a3, . . .] =
1

a1 +
1

a2+
1

a3+...

.

E.g. golden mean
√
5−1
2

= [0; 1, 1, 1, . . .]

Theorem (Zhang ’11)

Every invariant Siegel disk of a map f ∈ Ratd with rotation number θ
is a K(d ,B)-quasidisk containing a critical point on the boundary.
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Shishikura’s surgery

Siegel disks can can be converted into Herman rings, and vice versa, via QC surgery.

Corollary

The boundary components of an invariant Herman ring of f ∈ Ratd with
rotation number θ and modulus µ are K(d ,B,µ)-quasicircle containing a critical point.
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A nice class of Herman rings

Fix integers d0, d∞ ≥ 2.

Let H = space of degree d0 + d∞ − 1 rational maps f such that

1 f has critical fixed points at 0 and ∞ of
local degree d0 and d∞,

2 f has a Herman ring H of rotation number θ,

3 H separates 0 and ∞,

4 all other critical points lie on ∂H.

Theorem (A priori bounds, L’23)

The boundary components of the Herman ring of f ∈ H are K(d0, d∞,B)-quasicircles.
In particular, dilatation is independent of mod(H).
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How to prove a priori bounds?

Let H be a boundary component of H.
Endow H with the combinatorial metric, i.e. the unique normalized f -invariant metric.

I = an interval in H of (combinatorial) length |I | < 0.1.
10I = the interval of length 10|I | having the same midpoint as I .

W10(I ) = the extremal width of curves connecting I and H\10I .

small W10(I ) large W10(I )

W10(I ) encodes the local (near-)degeneration of H near the interval I .
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Near-degenerate regime

It is sufficient to find constants ε and K > 1 depending only on d0, d∞,B such that:

every interval I ⊂ H of length |I | < ε satisfies W10(I ) < K.

Our goal is reduced to showing:

Theorem (Amplification)

If

there is an interval I ⊂ H with length |I | ≪ 1 and width W10(I ) = K≫ 1,

then

there is another interval J ⊂ H with length |J| ≪ 1 and width W10(J) ≥ 2K.

(All bounds depend only on d0, d∞,B.)

The proof relies on the analysis of near-degenerate surfaces via quasi-additivity law,
covering lemma, canonical arc diagrams, including ideas from Kahn-Lyubich ’05, Kahn
’06, and D.Dudko-Lyubich ’22.
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Rotation curves

An invariant curve X ⊂ Ĉ of a holomorphic map f is a rotation curve if f |X is conjugate
to irrational rotation.

If X is not contained in the closure of a rotation domain, we call it a Herman curve.

Proposition (Trichotomy)

When rot(f |X ) is of bounded type, there are 3 possibilities:

a. X is an analytic curve contained in a rotation domain,

b. X is the boundary of a rotation domain containing a critical point of f ,

h. X is a Herman curve containing inner and outer critical points of f .
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Example #0: trivial Herman curve

For any irrational θ, there is a unique ζθ ∈ T such that the unit circle is a Herman curve
of rotation number θ for the map

fθ(z) = ζθz
2 z − 3

1− 3z
.

Question by Eremenko: Can non-trivial Herman curves exist?
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Realizing arbitrary combinatorics

The combinatorics of a Herman curve H refers to the relative combinatorial position and
the criticalities of critical points on H.

Theorem (Realization + Rigidity)

For bounded type θ and any chosen combinatorial data,

there exists f ∈ ∂H admitting a Herman quasicircle that has
a rotation number θ and the prescribed combinatorics;

f is unique up to conformal conjugacy.
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Realization

Step 1: Apply a priori bounds.

For ε > 0,
{f ∈ H : mod(H) < ε}/ ∼

conf

is precompact inside of Ratd0+d∞−1/ ∼
conf

.

Step 2: Use a Thurston-type result for Herman rings (Wang ’12).

There exists f1 ∈ H whose Herman ring has combinatorics similar to the chosen one.

Step 3: Apply QC deformation.

There is a normalized family of maps {ft}0<t≤1 in H of the same combinatorics, with
modulus → 0 as t → 0.

Result: ft → f0 ∈ ∂H
f0 has a Herman quasicircle with the same combinatorics as f1.
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Rigidity

An invariant line field of f is a measurable Beltrami differential µ = µ(z) dz̄
dz

on Ĉ where

f ∗µ = µ a.e.,

supp(µ) = positive area subset of J(f ),

|µ(z)| = 1 on supp(µ).

Theorem (NILF, L’23)

Suppose f is a rational map that is J-rotational, i.e. every critical point in J(f ) either

has finite orbit, or

is eventually mapped to a bounded type rotation quasicircle.

Then, J(f ) supports no invariant line field of f .

Given two maps in ∂H,

combinatorial
equivalence

pullback−−−−−−−−→
argument

QC conjugacy,
conformal on the Fatou set

NILF−−−−−−→ conformal
conjugacy
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Example #1: antipode-preserving rational maps (Bonifant-Buff-Milnor)

q2 parameter plane for fq(z) = z2
q − z

1 + q̄z

•
q2

hairθ

•
q2
∗

Dynamical plane of fq Dynamical plane of fq∗

Herman
ring

Herman
quasicircle

For every bounded type θ, there is an analytic curve “hairθ“ of parameters q2

where fq has a Herman ring of rotation number θ. hairθ lands at a unique parameter q2∗.
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Example #2: an imbalanced unicritical Herman curve

Fc∗ (z) = c∗z
3 4 − z

1 − 4z + 6z2
, c∗ ≈ −1.144208 − 0.964454i

H f −1(H)
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Example #2: the parameter space picture

Conjecture: Bifurcation locus of {Fc}c∈C∗ is self-similar at the special parameter c⋆

34 / 39



Beyond the realm of rational maps

critical quasicircle map =

{
analytic self homeomorphism f of a quasicircle H

with a unique critical point on H

Theorem (C 1+α rigidity, L’23)

Given two critical quasicircle maps f1 : H1 → H1 and f2 : H2 → H2

of the same criticalities (d0, d∞) and bounded type rotation number,

there is a QC conjugacy ϕ between f1 and f2 on a neighborhood of H1;

ϕ is uniformly C 1+α-conformal on H1.
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Consequences of C 1+α rigidity

Given a critical quasicircle map f : H→ H with bounded type rotation number θ
and inner and outer criticalities d0, d∞,

1 H is C 1 smooth ←→ dim(H) = 1 ←→ d0 = d∞;

2 dim(H) is universal;

3 if θ is an quadratic irrational, H is self-similar at the critical point with universal
self-similar constant;

4 renormalizations Rnf converge exponentially fast to a unique R-invariant horseshoe
attractor.
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Open questions

1 Can we describe ∂H when θ is of unbounded type?
⇒ For d0 = d∞ = 2 and high type θ, there exist smooth Herman curves.

[Yang Fei ’22]

2 Is every limit of degenerating Herman rings always a Herman curve?

3 Is every bounded type Herman curve a limit of degenerating Herman rings?

4 For f ∈ ∂H, is area J(f ) = 0? Is dim J(f ) < 2?
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Thank you!
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