From Herman rings to Herman curves

Willie Rush Lim

Stony Brook University

Quasiworld Seminar November 1st 2023

Complex dynamics = study of holomorphic self maps f of a complex manifold M

$$x \mapsto f(x) \mapsto f^2(x) \mapsto f^3(x) \mapsto \dots$$

Complex dynamics = study of holomorphic self maps f of a complex manifold M

$$x \mapsto f(x) \mapsto f^2(x) \mapsto f^3(x) \mapsto \ldots$$

Dichotomy:

Fatou set F(f) = set of points $z \in M$ near which $\{f^n\}_{n \ge 0}$ is normal, Julia set $J(f) = M \setminus F(f)$. Complex dynamics = study of holomorphic self maps f of a complex manifold M

$$x \mapsto f(x) \mapsto f^2(x) \mapsto f^3(x) \mapsto \ldots$$

Dichotomy:

Fatou set F(f) = set of points $z \in M$ near which $\{f^n\}_{n \ge 0}$ is normal, Julia set $J(f) = M \setminus F(f)$.

In this talk, we take $M = \hat{\mathbb{C}}$ and $f \in \operatorname{Rat}_d$ is a degree $d \ge 2$ rational map.

Rotation domains

A maximal invariant domain $U \subset \hat{\mathbb{C}}$ of f is called a rotation domain if $f|_U$ is conjugate to a rigid rotation. There are 2 types:

- U is simply connected, i.e. a Siegel disk;
- **2** U is an annulus, i.e. a Herman ring.

Rotation domains

A maximal invariant domain $U \subset \hat{\mathbb{C}}$ of f is called a rotation domain if $f|_U$ is conjugate to a rigid rotation. There are 2 types:

- U is simply connected, i.e. a Siegel disk;
- **0** *U* is an annulus, i.e. a Herman ring.



 $f(z) = z^2 + c$ where $c \approx -0.3905 - 0.5868i$

Bounded type assumption

Fix an irrational $\theta \in (0, 1)$ and assume it is of **bounded type**, i.e. there is some $B \in \mathbb{N}$ such that $\sup_n a_n \leq B$ where

$$\theta = [0; a_1, a_2, a_3, \ldots] = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \ldots}}}$$

E.g. golden mean $\frac{\sqrt{5}-1}{2}=[0;1,1,1,\ldots]$

Bounded type assumption

Fix an irrational $\theta \in (0, 1)$ and assume it is of **bounded type**, i.e. there is some $B \in \mathbb{N}$ such that $\sup_n a_n \leq B$ where

$$\theta = [0; a_1, a_2, a_3, \ldots] = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \ldots}}}$$

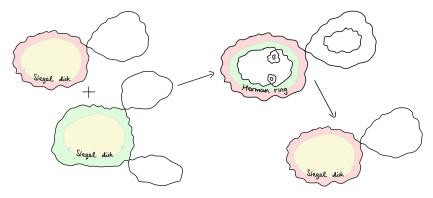
E.g. golden mean $\frac{\sqrt{5}-1}{2}=[0;1,1,1,\ldots]$

Theorem (Zhang '11)

Every invariant Siegel disk of a map $f \in \text{Rat}_d$ with rotation number θ is a K(d, B)-quasidisk containing a critical point on the boundary.

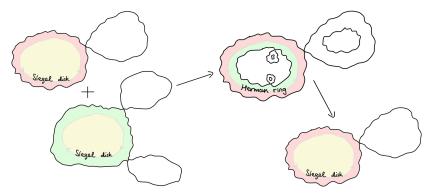
Shishikura's surgery

Siegel disks can can be converted into Herman rings, and vice versa, via QC surgery.



Shishikura's surgery

Siegel disks can can be converted into Herman rings, and vice versa, via QC surgery.



Corollary

The boundary components of an invariant Herman ring of $f \in \text{Rat}_d$ with rotation number θ and modulus μ are $K(d, B, \mu)$ -quasicircle containing a critical point.

Fix integers $d_0, d_\infty \geq 2$.

Let $\mathcal{H}=$ space of degree $d_0+d_\infty-1$ rational maps f such that

- f has critical fixed points at 0 and ∞ of local degree d_0 and d_∞ ,
- 2) f has a Herman ring \mathbb{H} of rotation number θ ,
- $\textcircled{3} \ \mathbb{H} \ \text{separates} \ \texttt{0} \ \text{and} \ \infty,$
- all other critical points lie on $\partial \mathbb{H}$.

Fix integers $d_0, d_\infty \geq 2$.

Let $\mathcal{H}=$ space of degree $d_0+d_\infty-1$ rational maps f such that

- f has critical fixed points at 0 and ∞ of local degree d_0 and d_∞ ,
- 2) f has a Herman ring \mathbb{H} of rotation number θ ,
- $\textcircled{3} \ \mathbb{H} \ \text{separates} \ \texttt{0} \ \text{and} \ \infty,$
- **9** all other critical points lie on $\partial \mathbb{H}$.

Theorem (A priori bounds, L'23)

The boundary components of the Herman ring of $f \in \mathcal{H}$ are $K(d_0, d_\infty, B)$ -quasicircles. In particular, dilatation is independent of $mod(\mathbb{H})$. Let *H* be a boundary component of \mathbb{H} .

Endow H with the combinatorial metric, i.e. the unique normalized f-invariant metric.

How to prove a priori bounds?

Let *H* be a boundary component of \mathbb{H} .

Endow H with the combinatorial metric, i.e. the unique normalized f-invariant metric.

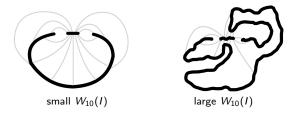
I = an interval in H of (combinatorial) length |I| < 0.1. 10I = the interval of length 10|I| having the same midpoint as I. $W_{10}(I) =$ the extremal width of curves connecting I and $H \setminus 10I$.

How to prove a priori bounds?

Let *H* be a boundary component of \mathbb{H} .

Endow H with the combinatorial metric, i.e. the unique normalized f-invariant metric.

I =an interval in H of (combinatorial) length |I| < 0.1. 10I = the interval of length 10|I| having the same midpoint as I. $W_{10}(I) =$ the extremal width of curves connecting I and $H \setminus 10I$.



 $W_{10}(I)$ encodes the local (near-)degeneration of H near the interval I.

It is sufficient to find constants ε and K > 1 depending only on d_0, d_∞, B such that:

every interval $I \subset H$ of length $|I| < \varepsilon$ satisfies $W_{10}(I) < K$.

It is sufficient to find constants ε and K > 1 depending only on d_0, d_∞, B such that:

every interval $I \subset H$ of length $|I| < \varepsilon$ satisfies $W_{10}(I) < K$.

Our goal is reduced to showing:

Theorem (Amplification)

lf

there is an interval $I \subset H$ with length $|I| \ll 1$ and width $W_{10}(I) = \mathbf{K} \gg 1$,

then

there is another interval $J \subset H$ with length $|J| \ll 1$ and width $W_{10}(J) \ge 2K$.

(All bounds depend only on d_0, d_∞, B .)

It is sufficient to find constants ε and K > 1 depending only on d_0, d_∞, B such that:

every interval $I \subset H$ of length $|I| < \varepsilon$ satisfies $W_{10}(I) < K$.

Our goal is reduced to showing:

Theorem (Amplification)

lf

there is an interval $I \subset H$ with length $|I| \ll 1$ and width $W_{10}(I) = \mathbf{K} \gg 1$,

then

there is another interval $J \subset H$ with length $|J| \ll 1$ and width $W_{10}(J) \ge 2K$.

(All bounds depend only on d_0, d_∞, B .)

The proof relies on the analysis of near-degenerate surfaces via quasi-additivity law, covering lemma, canonical arc diagrams, including ideas from Kahn-Lyubich '05, Kahn '06, and D.Dudko-Lyubich '22.

Rotation curves

An invariant curve $X \subset \hat{\mathbb{C}}$ of a holomorphic map f is a rotation curve if $f|_X$ is conjugate to irrational rotation.

If X is not contained in the closure of a rotation domain, we call it a Herman curve.

Rotation curves

An invariant curve $X \subset \hat{\mathbb{C}}$ of a holomorphic map f is a rotation curve if $f|_X$ is conjugate to irrational rotation.

If X is not contained in the closure of a rotation domain, we call it a Herman curve.

Proposition (Trichotomy)

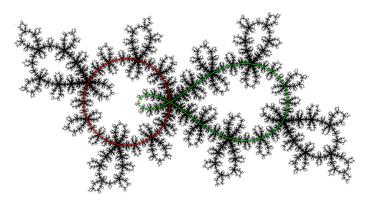
When $rot(f|_X)$ is of bounded type, there are 3 possibilities:

- a. X is an analytic curve contained in a rotation domain,
- b. X is the boundary of a rotation domain containing a critical point of f,
- h. X is a Herman curve containing inner and outer critical points of f.

Example #0: trivial Herman curve

For any irrational θ , there is a unique $\zeta_{\theta} \in \mathbb{T}$ such that the unit circle is a Herman curve of rotation number θ for the map

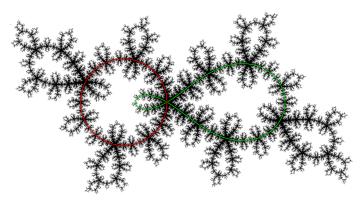
$$f_{ heta}(z) = \zeta_{ heta} z^2 rac{z-3}{1-3z}.$$



Example #0: trivial Herman curve

For any irrational θ , there is a unique $\zeta_{\theta} \in \mathbb{T}$ such that the unit circle is a Herman curve of rotation number θ for the map

$$f_{ heta}(z) = \zeta_{ heta} z^2 rac{z-3}{1-3z}.$$



Question by Eremenko: Can non-trivial Herman curves exist?

The combinatorics of a Herman curve H refers to the relative combinatorial position and the criticalities of critical points on H.

The combinatorics of a Herman curve H refers to the relative combinatorial position and the criticalities of critical points on H.

Theorem (Realization + Rigidity)

For bounded type θ and any chosen combinatorial data,

- there exists $f \in \partial \mathcal{H}$ admitting a Herman quasicircle that has a rotation number θ and the prescribed combinatorics;
- f is unique up to conformal conjugacy.

 $\begin{array}{l} \underline{\text{Step 1:}} \text{ Apply a priori bounds.} \\ \\ \text{For } \varepsilon > 0, \\ \\ \{f \in \mathcal{H} \ : \ \mathsf{mod}(\mathbb{H}) < \varepsilon\}/_{conf} \end{array}$

is precompact inside of $\operatorname{Rat}_{d_0+d_\infty-1}/_{\operatorname{conf}}$.

 $\underbrace{ \underline{\operatorname{Step 1:}}}_{\text{For } \varepsilon > 0,} \quad \{f \in \mathcal{H} \ : \ \operatorname{mod}(\mathbb{H}) < \varepsilon\}/_{\widetilde{\operatorname{conf}}}$

is precompact inside of $\operatorname{Rat}_{d_0+d_\infty-1}/_{\underset{\operatorname{conf}}{\sim}}$.

Step 2: Use a Thurston-type result for Herman rings (Wang '12).

There exists $f_1 \in \mathcal{H}$ whose Herman ring has combinatorics similar to the chosen one.

 $\label{eq:step1:step1:step1} \begin{array}{l} \underline{\text{Step 1:}} \text{ Apply a priori bounds.} \\ \\ \text{For } \varepsilon > 0, \\ \\ \left\{ f \in \mathcal{H} \ : \ \mathsf{mod}(\mathbb{H}) < \varepsilon \right\} /_{\overset{\sim}{\mathsf{conf}}} \end{array}$

is precompact inside of $\operatorname{Rat}_{d_0+d_\infty-1}/_{\underset{\operatorname{conf}}{\sim}}$.

<u>Step 2:</u> Use a Thurston-type result for Herman rings (Wang '12). There exists $f_1 \in \mathcal{H}$ whose Herman ring has combinatorics similar to the chosen one.

Step 3: Apply QC deformation.

There is a normalized family of maps $\{f_t\}_{0 < t \le 1}$ in \mathcal{H} of the same combinatorics, with modulus $\to 0$ as $t \to 0$.

 $\begin{array}{l} \underline{\text{Step 1:}} \text{ Apply a priori bounds.} \\ \\ \text{For } \varepsilon > 0, \\ \\ \{f \in \mathcal{H} \ : \ \mathsf{mod}(\mathbb{H}) < \varepsilon\}/_{\overset{\sim}{\mathsf{conf}}} \end{array} \end{array}$

is precompact inside of $\operatorname{Rat}_{d_0+d_\infty-1}/_{\underset{\operatorname{conf}}{\sim}}$.

<u>Step 2:</u> Use a Thurston-type result for Herman rings (Wang '12). There exists $f_1 \in \mathcal{H}$ whose Herman ring has combinatorics similar to the chosen one.

Step 3: Apply QC deformation.

There is a normalized family of maps $\{f_t\}_{0 < t \le 1}$ in \mathcal{H} of the same combinatorics, with modulus $\to 0$ as $t \to 0$.

 $\label{eq:Result: ft} \frac{\text{Result: }}{f_0 \text{ has a Herman quasicircle with the same combinatorics as } f_1.$

Rigidity

An invariant line field of f is a measurable Beltrami differential $\mu = \mu(z) \frac{d\bar{z}}{dz}$ on $\hat{\mathbb{C}}$ where

- $f^*\mu = \mu$ a.e.,
- $supp(\mu) = positive area subset of J(f),$
- $|\mu(z)| = 1$ on supp (μ) .

Rigidity

An invariant line field of f is a measurable Beltrami differential $\mu = \mu(z) \frac{d\bar{z}}{dz}$ on $\hat{\mathbb{C}}$ where

- $f^*\mu = \mu$ a.e.,
- $supp(\mu) = positive area subset of J(f),$
- $|\mu(z)| = 1$ on supp (μ) .

Theorem (NILF, L'23)

Suppose f is a rational map that is J-rotational, i.e. every critical point in J(f) either

- has finite orbit, or
- is eventually mapped to a bounded type rotation quasicircle.

Then, J(f) supports no invariant line field of f.

Rigidity

An invariant line field of f is a measurable Beltrami differential $\mu = \mu(z) \frac{d\bar{z}}{dz}$ on $\hat{\mathbb{C}}$ where

- $f^*\mu = \mu$ a.e.,
- $supp(\mu) = positive area subset of J(f),$
- $|\mu(z)| = 1$ on supp (μ) .

Theorem (NILF, L'23)

Suppose f is a rational map that is J-rotational, i.e. every critical point in J(f) either

- has finite orbit, or
- is eventually mapped to a bounded type rotation quasicircle.

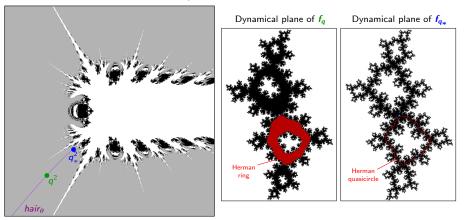
Then, J(f) supports no invariant line field of f.

Given two maps in $\partial \mathcal{H}$,

 $\begin{array}{ccc} \mathsf{combinatorial} & \xrightarrow{\mathsf{pullback}} & \mathsf{QC} \ \mathsf{conjugacy}, & \xrightarrow{\mathsf{NILF}} & \mathsf{conformal} \\ \mathsf{equivalence} & \xrightarrow{\mathsf{argument}} & \mathsf{conformal} \ \mathsf{on} \ \mathsf{the} \ \mathsf{Fatou} \ \mathsf{set} & \xrightarrow{\mathsf{conjugacy}} & \mathsf{conjugacy} \end{array}$

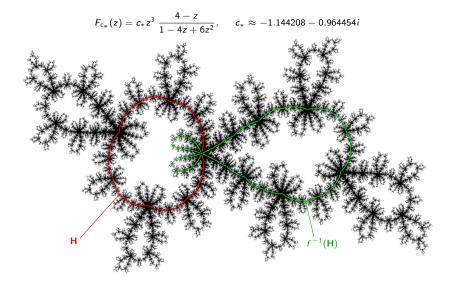
Example #1: antipode-preserving rational maps (Bonifant-Buff-Milnor)

 q^2 parameter plane for $f_q(z)=z^2~{q-z\over 1+ar q z}$

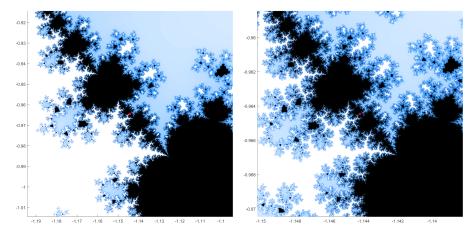


For every bounded type θ , there is an analytic curve "hair_{θ}" of parameters q^2 where f_q has a Herman ring of rotation number θ . hair_{θ} lands at a unique parameter q_*^2 .

Example #2: an imbalanced unicritical Herman curve



Example #2: the parameter space picture



Conjecture: Bifurcation locus of $\{F_c\}_{c\in\mathbb{C}^*}$ is self-similar at the special parameter c_\star

critical quasicircle map = $\begin{cases} \text{ analytic self homeomorphism } f \text{ of a quasicircle } \mathbf{H} \\ \text{with a unique critical point on } \mathbf{H} \end{cases}$

critical quasicircle map = $\begin{cases} analytic self homeomorphism f of a quasicircle H \\ with a unique critical point on H \end{cases}$

Theorem ($C^{1+\alpha}$ rigidity, L'23)

Given two critical quasicircle maps $f_1 : H_1 \rightarrow H_1$ and $f_2 : H_2 \rightarrow H_2$ of the same criticalities (d_0, d_∞) and bounded type rotation number,

- there is a QC conjugacy ϕ between f_1 and f_2 on a neighborhood of H_1 ;
- ϕ is uniformly $C^{1+\alpha}$ -conformal on \mathbf{H}_1 .

Consequences of $C^{1+\alpha}$ rigidity

Given a critical quasicircle map $f : \mathbf{H} \to \mathbf{H}$ with bounded type rotation number θ and inner and outer criticalities d_0, d_{∞} ,

- **9 H** is C^1 smooth \longleftrightarrow dim(**H**) = 1 \longleftrightarrow $d_0 = d_\infty$;
- eim(H) is universal;
- if θ is an quadratic irrational, H is self-similar at the critical point with universal self-similar constant;
- renormalizations $\mathcal{R}^n f$ converge exponentially fast to a unique \mathcal{R} -invariant horseshoe attractor.

- Quantum Can we describe ∂H when θ is of unbounded type?
 ⇒ For d₀ = d_∞ = 2 and high type θ, there exist smooth Herman curves. [Yang Fei '22]
- Is every limit of degenerating Herman rings always a Herman curve?
- Is every bounded type Herman curve a limit of degenerating Herman rings?
- For $f \in \partial \mathcal{H}$, is area J(f) = 0? Is dim J(f) < 2?

Thank you!