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Rotation curves

An invariant Jordan curve H ⊂ Ĉ of a holomorphic map f is a rotation curve if f |H is
conjugate to irrational rotation.

If H is not contained in the closure of a rotation domain, we call it a Herman curve.

Trichotomy: When rot(f |H) is of bounded type, there are 3 cases:
a. H is an analytic curve contained in a rotation domain,
b. H is the boundary of a rotation domain containing a critical point of f ,
h. H is a Herman curve containing inner and outer critical points of f .

We’ll focus on a Herman curve H with a single critical point c.
It comes with an inner criticality d0 and an outer criticality d∞.
The local degree at c is equal to d0 + d∞ − 1.
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Old example: d0 = d∞ = 2

For any irrational θ, there is a unique ζθ ∈ T such that the unit circle is a Herman curve
of rotation number θ for the map

fθ(z) = ζθz
2 z − 3

1− 3z
.
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Arbitrary criticality (d0, d∞)

Fix a bounded type θ and a pair (d0, d∞).

Theorem
There exists a unique degree d0 + d∞ − 1 rational map F such that

1 F has critical fixed points at 0 and ∞ with local degrees d0 and d∞,
2 F has a critical point 1 with local degree d0 + d∞ − 1,
3 F has a Herman quasicircle H of rotation number θ,
4 H passes through 1 and separates 0 and ∞.

θ = golden mean

(d0, d∞) = (3, 2)

Fc∗ (z) = c∗z
3 4 − z

1 − 4z + 6z2

c∗ ≈ −1.144208 − 0.964454i
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Proof of realization

-

Shishikura’s surgery:

zd∞ + cθ

Gt

zd0 + c−θ

By QC surgery, we can combine
two Siegel disks to get a Herman ring.

By QC deformation, we obtain a family of rational
maps Gt with a Herman ring Ht of modulus t.

Theorem (A priori bounds)
∂Ht are K-quasicircles, where K is independent of t.

Then, as t → 0, F = lim
t→0

Gt exists and has the desired Herman quasicircle H = lim
t→0

Ht.
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Proof of uniqueness (combinatorial rigidity)

fqn
fk

f−k ◦ fqn ◦ fk

c.p.

Theorem
J(F ) supports no invariant line field.

Given two such maps with equal θ and (d0, d∞),

combinatorial
equivalence

pullback−−−−−−−−→
argument

QC conjugacy,
conformal on the Fatou set

NILF−−−−−−→ conformal
conjugacy
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The parameter space picture

Conjecture: The bifurcation locus of
{
Fc = cz3

4− z

1− 4z + 6z2

}
c∈C∗

is self-similar at c?.
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Critical quasicircle maps

(uni-)critical quasicircle map =

{
analytic self homeomorphism f of a quasicircle H
with a unique critical point c on H

Petersen: rot(f |H) is of bounded type iff it is qs conjugate to irrational rotation.

The pre-renormalization pRnf is the commuting pair(
fqn |[cqn−1

,c0], f
qn−1 |[c0,cqn ]

)
.

The renormalization Rnf is obtained by affine
rescaling cqn−1 7→ −1 and c0 7→ 0.

fqnfqn−1

c0 cqncqn−1

cqn+qn−1
cqncqn−1
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Butterflies

H

U− U+

U×

V

•
0• •

fqn fqn−1

fqn+qn−1

A (3, 2)-critical structure for Rnf .

Theorem (Complex bounds)
For n � 0, the disks U×, U−, U+, V can be chosen to be uniform quasidisks.
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C1+α Rigidity

Theorem
Given two critical quasicircle maps f1 : H1 → H1 and f2 : H2 → H2

of the same criticalities (d0, d∞) and bounded type rotation number,
there is a QC conjugacy φ between f1 and f2 on a neighborhood of H1;
φ is uniformly C1+α-conformal on H1.

Ingredients of the proof:
1 Construct QC conjugacy φ via complex bounds and pullback argument.
2 No inv. line fields =⇒ φ has zero dilatation on K1 := iterated preimages of H1.
3 Points on H are uniformly deep in K1.

Corollary
If θ = [0;N,N, . . .], ∃! normalized commuting pair ζ∗ with rot(ζ∗) = θ and Rζ∗ = ζ∗.
Given a critical quasicircle map f : H → H with rot(f) = [0; ∗, . . . , ∗, N,N, . . .],

Rnf −→ ζ∗ exp. fast.
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Corona, an annular sibling of Pacman

U

V

γ0
2

γ0
1

γ∞
1

γ∞
2

γ∞
3

γ∞
4

γ0

γ1

•c.p.

f

A (2,3)-critical corona f : (U, γ0) → (V, γ1)

We say that f is rotational if f contains a Herman quasicircle passing through c.p.
essentially contained in U .
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Construction of rotational corona

•c1

f3

f5

β−

β+

•c1

•c4

•c6

Gluing β− and β+ projects the pre-corona, i.e. the pair (f5, f3), into a rotational corona.
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Hyperbolicity

Fix criticalities (d0, d∞) and θ = [0;N,N,N, . . .].

Theorem
There exists a corona renormalization operator R : U → B with the following properties.

1 U is an open subset of a Banach analytic manifold B consisting of (d0, d∞)-critical
coronas.

2 R is a compact analytic operator with a unique fixed point f∗ which is hyperbolic.
3 Ws = the space of rotational coronas with rotation number θ in B.
4 dim(Wu) = 1.

Corollary
Within the space of unicritical holomorphic maps on an annulus, the space of critical
quasicircle maps of rotation number θ is an analytic submanifold of codimension ≤ 1.
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How to prove hyperbolicity

Similar to the story of pacmen,
R is analytic (holomorphic motions)
R is compact (complex bounds)
If Rnf is close to f∗ for all n ∈ N, then f is rotational and in Ws. (renorm. tiling)

Similar to both pacmen and Feigenbaum,
DRf∗ has no neutral eigenvalues (small orbits theorem)

Similar to Feigenbaum,
DRf∗ has a repelling eigenvalue (combinatorial rigidity)

Remaining obstacle: dim(Wu) ≤ 1?
Unlike pacman, we have no α fixed points.
Unlike Feigenbaum, we don’t have “hybrid lamination“ or “external maps“.

Key: Identify Wu as a parameter space of transcendental maps of unknown dimension.
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Transcendental dynamics

For f ∈ Wu, the pre-corona (f+, f−) admits a maximal σ-proper extension

(f+ : W+ → C, f− : W− → C).

If fn = Rnf where n < 0, then

(f+, f−) is the rescaling by An
∗ (z) = µn

∗z of an iterate of (fn,+, fn,−).

There exists a dense sub-semigroup T of (R≥0,+) generated by {tna+, tna−}n∈Z, and
we get a cascade of transcendental maps

F =
(

FP : Dom(FP ) → C
)
P∈T

where Ftna± = fn,±.

When f = f∗,
FP
∗ = A−n

∗ ◦ FtnP
∗ ◦An

∗ for all P ∈ T, n ∈ Z.
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Dynamical sets for cascades

For f ∈ Wu, we define...
Fatou set:

F(F) = points of normality of
(
FP )

P∈T

Julia set:
J(F) = C\F(F)

postcritical set:

P(F) = closure of the critical orbit
(
FP (0)

)
P∈T

finite-time escaping set:

I<∞(F) =
⋃
P∈T

C\Dom
(
FP )

infinite-time escaping set:

I∞(F) = points x where FP (x) → ∞ as P → ∞

full escaping set:
I(F) = I<∞(F) ∪ I∞(F).
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Approximate dynamical picture for F∗, the R fixed point

In blue:
Some rays in I<∞(F∗)

landing at critical points of F∗

P(F∗)
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Wu is one-dimensional

Proposition: If J(F) has no interior, then for almost every z ∈ J(F),

either z ∈ I(F) or dist
(
FP (z),P(F)

)
→ 0.

Theorem (Rigidity of escaping dynamics)
I(F) supports no invariant line field & moves conformally away from the pre-critical pts.
If F is hyperbolic, then J(F) also supports no invariant line field.

At last,

unicriticality
+

combinatorial rigidity
====⇒ ∃ hyperbolic component

Ω ⊂ Wu near f∗
theorem======⇒
above

dim(Ω) ≤ 1
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