Lecture 1: Herman Curves

Willie Rush Lim

Stony Brook University

December 6, 2023

An invariant Jordan curve $\mathbf{H} \subset \hat{\mathbb{C}}$ of a holomorphic map f is a rotation curve if $f|_{\mathbf{H}}$ is conjugate to irrational rotation.

If \mathbf{H} is not contained in the closure of a rotation domain, we call it a Herman curve.

An invariant Jordan curve $\mathbf{H} \subset \hat{\mathbb{C}}$ of a holomorphic map f is a rotation curve if $f|_{\mathbf{H}}$ is conjugate to irrational rotation.

If ${\bf H}$ is not contained in the closure of a rotation domain, we call it a Herman curve.

Trichotomy: When $rot(f|_{\mathbf{H}})$ is of bounded type, there are 3 cases:

- a. ${\bf H}$ is an analytic curve contained in a rotation domain,
- b. H is the boundary of a rotation domain containing a critical point of f,
- h. H is a Herman curve containing inner and outer critical points of f.

An invariant Jordan curve $\mathbf{H} \subset \hat{\mathbb{C}}$ of a holomorphic map f is a rotation curve if $f|_{\mathbf{H}}$ is conjugate to irrational rotation.

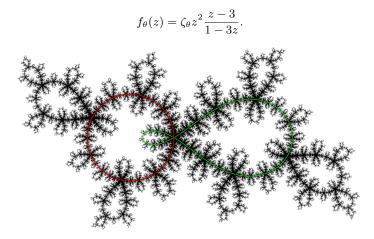
If ${\bf H}$ is not contained in the closure of a rotation domain, we call it a Herman curve.

Trichotomy: When $rot(f|_{\mathbf{H}})$ is of bounded type, there are 3 cases:

- a. H is an analytic curve contained in a rotation domain,
- b. H is the boundary of a rotation domain containing a critical point of f,
- h. H is a Herman curve containing inner and outer critical points of f.

We'll focus on a Herman curve **H** with a single critical point c. It comes with an inner criticality d_0 and an outer criticality d_{∞} . The local degree at c is equal to $d_0 + d_{\infty} - 1$. Old example: $d_0 = d_\infty = 2$

For any irrational θ , there is a unique $\zeta_{\theta} \in \mathbb{T}$ such that the unit circle is a Herman curve of rotation number θ for the map



Arbitrary criticality (d_0, d_∞)

Fix a bounded type θ and a pair (d_0, d_∞) .

Theorem

There exists a unique degree $d_0 + d_\infty - 1$ rational map F such that

- **(**) F has critical fixed points at 0 and ∞ with local degrees d_0 and d_{∞} ,
- **2** F has a critical point 1 with local degree $d_0 + d_{\infty} 1$,
- **③** F has a Herman quasicircle **H** of rotation number θ ,
- **9** H passes through 1 and separates 0 and ∞ .

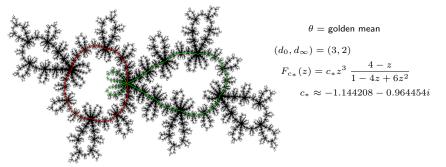
Arbitrary criticality (d_0, d_∞)

Fix a bounded type θ and a pair (d_0, d_∞) .

Theorem

There exists a unique degree $d_0 + d_{\infty} - 1$ rational map F such that

- **(**) F has critical fixed points at 0 and ∞ with local degrees d_0 and d_∞ ,
- **2** F has a critical point 1 with local degree $d_0 + d_{\infty} 1$,
- **③** F has a Herman quasicircle **H** of rotation number θ ,
- H passes through 1 and separates 0 and ∞ .



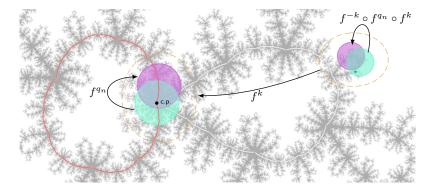


Theorem (A priori bounds)

 $\partial \mathbb{H}_t$ are K-quasicircles, where K is independent of t.

Then, as $t \to 0$, $F = \lim_{t \to 0} G_t$ exists and has the desired Herman quasicircle $\mathbf{H} = \lim_{t \to 0} \mathbb{H}_t$.

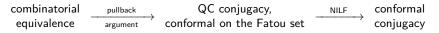
Proof of uniqueness (combinatorial rigidity)



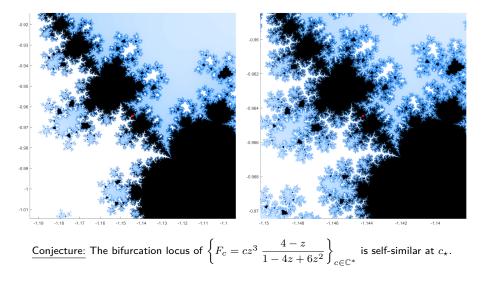
Theorem

J(F) supports no invariant line field.

Given two such maps with equal θ and (d_0, d_∞) ,



The parameter space picture



(uni-)critical quasicircle map = $\begin{cases} analytic self homeomorphism f of a quasicircle H \\ with a unique critical point c on H \end{cases}$

<u>Petersen</u>: $rot(f|_{\mathbf{H}})$ is of bounded type iff it is qs conjugate to irrational rotation.

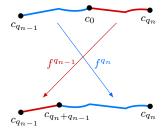
(uni-)critical quasicircle map = $\begin{cases} analytic self homeomorphism f of a quasicircle H \\ with a unique critical point c on H \end{cases}$

Petersen: $rot(f|_{\mathbf{H}})$ is of bounded type iff it is qs conjugate to irrational rotation.

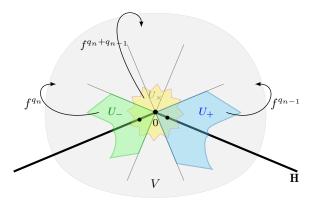
The pre-renormalization $p\mathcal{R}^n f$ is the commuting pair

$$\left(f^{q_n}|_{[c_{q_{n-1}},c_0]}, f^{q_{n-1}}|_{[c_0,c_{q_n}]}\right).$$

The renormalization $\mathcal{R}^n f$ is obtained by affine rescaling $c_{q_{n-1}} \mapsto -1$ and $c_0 \mapsto 0$.



Butterflies



A (3,2)-critical i structure for $\mathcal{R}^n f$.

Theorem (Complex bounds)

For $n \gg 0$, the disks $U_{\times}, U_{-}, U_{+}, V$ can be chosen to be uniform quasidisks.

$C^{1+\alpha}$ Rigidity

Theorem

Given two critical quasicircle maps $f_1 : \mathbf{H}_1 \to \mathbf{H}_1$ and $f_2 : \mathbf{H}_2 \to \mathbf{H}_2$ of the same criticalities (d_0, d_∞) and bounded type rotation number,

- there is a QC conjugacy ϕ between f_1 and f_2 on a neighborhood of \mathbf{H}_1 ;
- ϕ is uniformly $C^{1+\alpha}$ -conformal on \mathbf{H}_1 .

Ingredients of the proof:

- $\textbf{O} \ \text{Construct QC conjugacy } \phi \ \text{via complex bounds and pullback argument.}$
- **(a)** No inv. line fields $\implies \phi$ has zero dilatation on $K_1 := \overline{\text{iterated preimages of } \mathbf{H}_1}$.
- **③** Points on **H** are uniformly deep in K_1 .

$C^{1+\alpha}$ Rigidity

Theorem

Given two critical quasicircle maps $f_1 : \mathbf{H}_1 \to \mathbf{H}_1$ and $f_2 : \mathbf{H}_2 \to \mathbf{H}_2$ of the same criticalities (d_0, d_∞) and bounded type rotation number,

- there is a QC conjugacy ϕ between f_1 and f_2 on a neighborhood of \mathbf{H}_1 ;
- ϕ is uniformly $C^{1+\alpha}$ -conformal on \mathbf{H}_1 .

Ingredients of the proof:

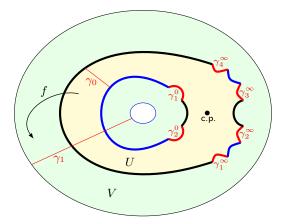
- **(**) Construct QC conjugacy ϕ via complex bounds and pullback argument.
- **(a)** No inv. line fields $\implies \phi$ has zero dilatation on $K_1 :=$ iterated preimages of \mathbf{H}_1 .
- **③** Points on **H** are uniformly deep in K_1 .

Corollary

If $\theta = [0; N, N, \ldots]$, \exists ! normalized commuting pair ζ_* with $rot(\zeta_*) = \theta$ and $\mathcal{R}\zeta_* = \zeta_*$. Given a critical quasicircle map $f : \mathbf{H} \to \mathbf{H}$ with $rot(f) = [0; *, \ldots, *, N, N, \ldots]$,

$$\mathcal{R}^n f \longrightarrow \zeta_*$$
 exp. fast.

Corona, an annular sibling of Pacman



A (2,3)-critical corona $f: (U, \gamma_0) \rightarrow (V, \gamma_1)$

We say that f is rotational if f contains a Herman quasicircle passing through c.p. essentially contained in U.

Construction of rotational corona



Gluing β_- and β_+ projects the pre-corona, i.e. the pair (f^5,f^3) , into a rotational corona.

Hyperbolicity

Fix criticalities (d_0, d_∞) and $\theta = [0; N, N, N, \ldots]$.

Theorem

There exists a corona renormalization operator $\mathcal{R}: \mathcal{U} \to \mathcal{B}$ with the following properties.

- U is an open subset of a Banach analytic manifold B consisting of (d₀, d_∞)-critical coronas.
- **(a)** \mathcal{R} is a compact analytic operator with a unique fixed point f_* which is hyperbolic.
- **(9** \mathcal{W}^s = the space of rotational coronas with rotation number θ in \mathcal{B} .
- $Im(\mathcal{W}^u) = 1.$

Hyperbolicity

Fix criticalities (d_0, d_∞) and $\theta = [0; N, N, N, \ldots]$.

Theorem

There exists a corona renormalization operator $\mathcal{R}: \mathcal{U} \to \mathcal{B}$ with the following properties.

- U is an open subset of a Banach analytic manifold B consisting of (d₀, d_∞)-critical coronas.
- **(a)** \mathcal{R} is a compact analytic operator with a unique fixed point f_* which is hyperbolic.
- **③** \mathcal{W}^s = the space of rotational coronas with rotation number θ in \mathcal{B} .
- $Im(\mathcal{W}^u) = 1.$

Corollary

Within the space of unicritical holomorphic maps on an annulus, the space of critical quasicircle maps of rotation number θ is an analytic submanifold of codimension ≤ 1 .

How to prove hyperbolicity

Similar to the story of pacmen,

- \mathcal{R} is analytic (holomorphic motions)
- \mathcal{R} is compact (complex bounds)
- If $\mathcal{R}^n f$ is close to f_* for all $n \in \mathbb{N}$, then f is rotational and in \mathcal{W}^s . (renorm. tiling)

Similar to both pacmen and Feigenbaum,

• $D\mathcal{R}_{f_*}$ has no neutral eigenvalues (small orbits theorem)

Similar to Feigenbaum,

• $D\mathcal{R}_{f_*}$ has a repelling eigenvalue (combinatorial rigidity)

How to prove hyperbolicity

Similar to the story of pacmen,

- \mathcal{R} is analytic (holomorphic motions)
- \mathcal{R} is compact (complex bounds)
- If $\mathcal{R}^n f$ is close to f_* for all $n \in \mathbb{N}$, then f is rotational and in \mathcal{W}^s . (renorm. tiling)

Similar to both pacmen and Feigenbaum,

• $D\mathcal{R}_{f_*}$ has no neutral eigenvalues (small orbits theorem)

Similar to Feigenbaum,

• $D\mathcal{R}_{f_*}$ has a repelling eigenvalue (combinatorial rigidity)

Remaining obstacle: dim $(\mathcal{W}^u) \leq 1$?

Unlike pacman, we have no α fixed points. Unlike Feigenbaum, we don't have "hybrid lamination" or "external maps".

Key: Identify $\mathcal{W}^{\boldsymbol{u}}$ as a parameter space of transcendental maps of unknown dimension.

Transcendental dynamics

For $f \in \mathcal{W}^u$, the pre-corona (f_+, f_-) admits a maximal σ -proper extension

 $(\mathbf{f}_+: W_+ \to \mathbb{C}, \, \mathbf{f}_-: W_- \to \mathbb{C}).$

If $f_n = \mathcal{R}^n f$ where n < 0, then

 $(\mathbf{f}_+, \mathbf{f}_-)$ is the rescaling by $A^n_*(z) = \mu^n_* z$ of an iterate of $(\mathbf{f}_{n,+}, \mathbf{f}_{n,-})$.

Transcendental dynamics

For $f \in \mathcal{W}^u$, the pre-corona (f_+, f_-) admits a maximal σ -proper extension

 $(\mathbf{f}_+: W_+ \to \mathbb{C}, \mathbf{f}_-: W_- \to \mathbb{C}).$

If $f_n = \mathcal{R}^n f$ where n < 0, then

 $(\mathbf{f}_+, \mathbf{f}_-)$ is the rescaling by $A^n_*(z) = \mu^n_* z$ of an iterate of $(\mathbf{f}_{n,+}, \mathbf{f}_{n,-})$.

There exists a dense sub-semigroup T of $(\mathbb{R}_{\geq 0}, +)$ generated by $\{t^n a_+, t^n a_-\}_{n \in \mathbb{Z}}$, and we get a cascade of transcendental maps

$$\mathbf{F} = \left(\mathbf{F}^{P}: \mathsf{Dom}(\mathbf{F}^{P}) \to \mathbb{C}\right)_{P \in \mathbf{T}}$$

where $\mathbf{F}^{\mathbf{t}^n \mathbf{a}_{\pm}} = \mathbf{f}_{n,\pm}$.

When $f = f_*$, $\mathbf{F}^P_* = A^{-n}_* \circ \mathbf{F}^{\mathbf{t}^n P}_* \circ A^n_*$ for all $P \in \mathbf{T}, n \in \mathbb{Z}$.

Dynamical sets for cascades

For $f \in \mathcal{W}^u$, we define...

• Fatou set:

$$\mathfrak{F}(\mathbf{F}) = \mathsf{points} ext{ of normality of } \left(\mathbf{F}^P
ight)_{P \in \mathbf{T}}$$

Julia set:

$$\mathfrak{J}(\mathbf{F}) = \mathbb{C} \setminus \mathfrak{F}(\mathbf{F})$$

o postcritical set:

$$\mathfrak{P}(\mathbf{F}) =$$
 closure of the critical orbit $(\mathbf{F}^{P}(0))_{P \in \mathbf{T}}$

• finite-time escaping set:

$$\mathbf{I}_{<\infty}(\mathbf{F}) = \bigcup_{P \in \mathbf{T}} \mathbb{C} \backslash \mathsf{Dom}\big(\mathbf{F}^P\big)$$

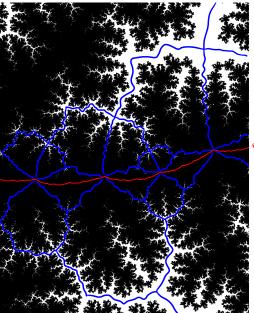
• infinite-time escaping set:

$$\mathbf{I}_{\infty}(\mathbf{F})=~$$
 points x where $\mathbf{F}^{P}(x)
ightarrow\infty$ as $P
ightarrow\infty$

• full escaping set:

$$I(F) = I_{<\infty}(F) \cup I_{\infty}(F).$$

Approximate dynamical picture for $F_\ast,$ the ${\mathcal R}$ fixed point



In blue: Some rays in $I_{<\infty}(F_*)$ landing at critical points of F_*

 $\mathfrak{P}(F_\ast)$

Proposition: If $\mathfrak{J}(\mathbf{F})$ has no interior, then for almost every $z \in \mathfrak{J}(\mathbf{F})$,

```
either z \in \mathbf{I}(\mathbf{F}) or \mathsf{dist}(\mathbf{F}^P(z), \mathfrak{P}(\mathbf{F})) \to 0.
```

Theorem (Rigidity of escaping dynamics)

I(F) supports no invariant line field & moves conformally away from the pre-critical pts. If F is hyperbolic, then $\mathfrak{J}(F)$ also supports no invariant line field.

At last,

