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Bounded type rotation domains

Fix a bounded type irrational θ ∈ (0, 1). ∃ B ∈ N such that supn an ≤ B where

θ = [0; a1, a2, a3, . . .] =
1

a1 +
1

a2+
1

a3+...

.

Theorem (Zhang ’11)
Every invariant Siegel disk of a map f ∈ Ratd with rotation number θ
is a K(d,B)-quasidisk containing a critical point on the boundary.

Corollary
The boundary components of an invariant Herman ring of f ∈ Ratd with
rotation number θ and modulus µ are K(d,B,µ)-quasicircle containing a critical point.
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Herman rings of the simplest configuration

Let H = space of degree d0 + d∞ − 1 rational maps f that can be obtained by:

Shishikura’s
surgerydegree d∞ poly. f

degree d0 poly.

f has...
• superattractors at 0 and ∞ of local degree d0 and d∞,
• Herman ring H of rotation number θ,
• all critical points contained in ∂H.

Theorem (A priori bounds)
The boundary components of the Herman ring of f ∈ H are K(d0, d∞, B)-quasicircles.
In particular, dilatation is independent of mod(H).
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Proof via near-degenerate regime

Let H be a boundary component of H.
Endow H with the combinatorial metric, i.e. the unique normalized f -invariant metric.

Goal: Find constants ε and K > 1 (depending only on d0, d∞, B) such that:

every interval I ⊂ H of length |I| < ε satisfies W10(I) < K.

Theorem (Amplification)
If

there is an interval I ⊂ H with length |I| < ε and width W10(I) = K � 1,
then

there is another interval J ⊂ H with length |J | < ε and width W10(J) ≥ 2K.
(All bounds depend only on d0, d∞, B.)
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Herman scale vs. Siegel scale

Assume mod(H) is very small. Given an interval I ⊂ H...
Siegel scale: |I| < mod(H),
Herman scale: mod(H) < |I| < ε.

At the Siegel scale,
width of curves connecting I and ∂H\H
= O(1).

The Herman scale is the main case.
Replace:

H with H := H,
intervals I ⊂ H with “pieces“ I ⊂ H,
W10(I) with W10(I).

width=O(1)

I ⊂ H

(10I)c

I ⊂ H

(10I)c
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Strategy

W10(I) = K � 1

Wλ(I
′) ≥ δK

where δ is indep. of λ

W10(I
′′) ≥ CλδK

where lim
λ→∞

Cλ = ∞

W10(J) ≥ 2K
where |J | � |I|
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Proof of

Assume ∃ level n combinatorial piece I width Wλ(I) = K.

Step 1: Spreading around:

either W10(f
j(I)) ≥ 2K

for some j.
or Wλ(f

j(I)) � K
for all j = 1, 2, . . . , qn+1.

Step 2: Apply quasiadditivity law:
Set N ≈ 0.001λ and consider 2N + 1 islands

J−N , J−N+1, . . . , J0, . . . , JN−1, JN

from the tiling {f j(I)}j that are 10-separated from one another.
Set U = Ĉ\(ρJ0)

c, a disk containing λJi for all i.
Either

∃ i such that W10(Ji) �
√
λK,

or
W10(P ) �

√
λK where ∪i Ji ⊂ P.
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Strategy

W10(I) = K � 1

Wλ(I
′) ≥ δK

where δ is indep. of λ

W10(I
′′) ≥ CλδK

where lim
λ→∞

Cλ = ∞

W10(J) ≥ 2K
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Proof of

Assume ∃ level n combinatorial piece I with W10(I) ≥ K.

Step 1: Spreading around:

W10(f
j(I)) � K for all j = 1, 2, . . . qn+1.

Step 2: Localization: either

∃ piece J where W10(J) ≥ 2K, or

∃ pieces L = f i(I) and R ⊂ (10L)c such that

dist(L,R) � |R| � |L| and width{γ ∈ F10(L) : γ lands on R} � K.

(10L)c L R (10L)c
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Two islands in a lake

Consider the disk U = Ĉ\(λL)c. Then, WU (L,R) � K.

L R
Lqr Rqr

U Uqr

L̂ R̂
L̂qr R̂qr

U

Û Ûqr

fqr

fqr

ι
ι ι

Pick high r > n. We define Û , L̂, R̂ by removing (λfqr (L))c, fqr (L), and fqr (R).

10 / 17



L R

U

L̂ R̂
L̂qr R̂qr

U

Û Ûqr

fqr

Step 3: Either the symmetric difference in red gives W10(J) ≥ 2K or Wλ(J) � K, or

Wh
can(U,L ∪R) � Wh

can(Û , L̂ ∪ R̂).

Step 4: For large r > n, ∃ δ(r) → 0 such that either

∃ J where W10(J) ≥ 2K, or Wh
can(Û

qr , L̂qr ∪ R̂qr ) ≤ δ ·Wh
can(Û , L̂ ∪ R̂).
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L R

U

L̂ R̂
L̂qr R̂qr

U

Û Ûqr

fqr

From the green inclusion,

Wh
can(Û

qr , L̂qr ∪ R̂qr ) +W v
can(Û

qr , L̂qr ∪ R̂qr ) ≥ Wh
can(U,L ∪R)−O(1).

Step 5: W v
can(Û

qr , L̂qr ∪ R̂qr ) � K.

Step 6: By the covering lemma, ∃ J ∈ {L̂, R̂} such that either

W10(J) ≥ 2K or Wλ(J) � K.
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Step 4: Widthlifting −→ width loss?

Notation: W j := Wh
can(U

j , Lj ∪Rj).

KEY Proposition: ∃ δ < 1 such that for large r > n,

W 0 ≥ K =====⇒
∃ J where W10(J) ≥ 2K,

or
W qr ≤ δ ·W 0.

Proof: Split W j into Aj +Bj .

Lj
Rj

U j

Bj

Aj

Preliminary observation: Aj + 2Bj is monotone.
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Let CV =critical values of fqr in U .

fqr : Uqr\f−qr (L ∪R ∪ CV) → U\(L ∪R ∪ CV)

is an unbranched covering map of degree d = d(λ).

Thick-thin decomposition
T of U\(L ∪R ∪ CV): L R

B0

A0

A0

D0
L

D0
R

The thick-thin decomposition of Uqr\f−qr (L ∪R ∪ CV) is (fqr )∗T .
We say that a rectangle in (fqr )∗T is “persistent“ if it connects Lqr and Rqr .

Claim 1: Either
D0

L +D0
R ≺ K or ∃ J with W10(J) ≥ 2K.
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Claim 2: Either
Aqr + 2Bqr < ν(A0 + 2B0)

for some ν < 1, or the width of persistent rectangles in (fqr )∗T is Wper � K.

Persistent rectangles are represented by a single proper homotopy class rel CP(fqr ).

∂Uqr

∂Uqr

Lqr Rqr

G1

G2

G3

G4

A′
per passes through many gates Gi ⊂ f−qr (H).

Claim 3: If Wper � K, then ∃ piece J = fqr (Gi) such that W10(J) ≥ 2K.
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Shallow level

Caution! Our application of quasi-additivity law may bring us to shallower level.
At the shallow level (|I| � 1), we need a different approach to ensure that the new
degeneration is witnessed at a deeper level.

wave

I

Bubble-wave argument:
Given a wave of width K protecting a shallow level n comb. piece I,

∃ level n+m comb. piece J with W10(J) ≥ CmK.
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Suppose W10(I) = K where I is a comb. piece of shallow level n.

Introduce many level n+m pieces Ii between I and (10I)c with 10-separation.

I I1 I2 I3 I4 I5 (10I)c

F10(I)

If curves in F10(I) skip some Ii, they induce a wave. Ignoring this case,
chop up F10(I) via Ii’s and apply Grotzsch inequality and conclude that ∃ i with

W10(Ii) ≥ 2K.
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