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Bounded type rotation domains

Fix a bounded type irrational 6 € (0,1). 3 B € N such that sup,, a, < B where

1
6 = [0;a1,a2,as3,...] =

Theorem (Zhang '11)

Every invariant Siegel disk of a map f € Ratq with rotation number 6
is a K(d, B)-quasidisk containing a critical point on the boundary.

Corollary

The boundary components of an invariant Herman ring of f € Ratq with
rotation number 6 and modulus p are K (d, B, jv)-quasicircle containing a critical point.
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Herman rings of the simplest configuration

Let H = space of degree dp + doc — 1 rational maps f that can be obtained by:

[T

degree d poly.

Shishikura’s G
surgery

f has...
e superattractors at 0 and oo of local degree dp and doo,
e Herman ring H of rotation number 6,

e all critical points contained in OH.

degree do poly.

Theorem (A priori bounds)

The boundary components of the Herman ring of f € H are K(do, ds, B)-quasicircles.
In particular, dilatation is independent of mod(H).
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Proof via near-degenerate regime

Let H be a boundary component of H.
Endow H with the combinatorial metric, i.e. the unique normalized f-invariant metric.

Goal: Find constants € and K > 1 (depending only on do, dos, B) such that:

every interval I C H of length |I| < e satisfies Wio(I) < K.

Theorem (Amplification)
If
there is an interval I C H with length |I| < e and width W1o(I) = K > 1,
then
there is another interval J C H with length |J| < € and width W1o(J) > 2K.

(All bounds depend only on dy, doo, B.)
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Herman scale vs. Siegel scale

Assume mod(H) is very small. Given an interval I C H...
o Siegel scale: |I| < mod(H),
@ Herman scale: mod(H) < |I| < e.

At the Siegel scale, The Herman scale is the main case.
width of curves connecting I and 0H\H Replace:
=0(1). o H with H:=H,

@ intervals I C H with “pieces” I C H,
° W10(I) with W10(I).

IcH ICH
— — -
(101)° (10m)°
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Strategy

Wio(I) = K > 1

a WA([') > K
where ¢ is indep. of A
Wio(I") > Cr\6K
[&]—' where hm C\ =00

Wio(J) > 2K
where |J| < |1

6/17



Proof of &

Assume 3 level n combinatorial piece I width Wix(I) = K.

Step 1: Spreading around:

Wio(f/(I)) 2 2K WA(f(D) = K
1

either . )
I for some j. forall j =1,2,...,¢n+1-

Step 2: Apply quasiadditivity law:
Set N =~ 0.001\ and consider 2N + 1 islands

Jon, JoN+1, ooy Jo, ooy N1, IN

from the tiling {f7(I)}; that are 10-separated from one another.
Set U = C\(pJo)®, a disk containing \J; for all i.

Either
3 i such that Wio(J;) = VAK,

or
W10(P) - \/XK where U; J; C P.
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Proof of &

Assume 3 level n combinatorial piece I with Wio(I) > K.

Step 1: Spreading around:

Wio(f (1)) = K forall j =1,2,...qn+1.

Step 2: Localization: either
3 piece J where Wio(J) > 2K, or

3 pieces L = f*(I) and R C (10L)® such that

dist(L, R) < |R| < |L| and width{y € Fio(L): v lands on R} < K.

I — I
(10L)° L R

(10L)°
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Two islands in a lake

Consider the disk U = C\(AL)°. Then, Wi (L, R) >~ K.

-—
f’J'r‘
U Uar
] L ]
L L
-—
f‘h'
U Uar

Pick high r > n. We define U, L, R by removing (A\f? (L)), f% (L), and f?(R).
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U rar
Step 3: Either the symmetric difference in red gives Wig(J) > 2K or Wi (J) > K, or

Wk (U, LUR) =W (U,LUR).

Step 4: For large r > n, 3 §(r) — 0 such that either

3 J where Wig(J) > 2K, or Wl (U, L9 UR™) <& -Wl, (U, LUR).
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U Uar
From the green inclusion,
Wl (U, L UR™) + W, (U, L UR™) > Wk, (U, LUR) - O(1).

Step 5: W2, (U9, L UR™) » K.

Step 6: By the covering lemma, 3 J € {L, R} such that either

Wlo(J) > 2K or W)\(J) - K.
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Step 4: Widthlifting & — width loss?
Notation: W7 := Wi, (U?, L’ U R?).
KEY Proposition: 3 § < 1 such that for large r > n,
3 J where Wio(J) > 2K,

Wo>K =—— or
wa < §- WO,

Proof: Split W7 into A7 + BJ.

L Al R

BJ

U’

Preliminary observation: A’ 4 2B7 is monotone.
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Let CV =critical values of f% in U.
fr U\ ff"(LURUCV) - U\(LURUCV)

is an unbranched covering map of degree d = d(\).

0
Thick-thin decomposition Dr
T of U\(LURU CV): L : 3 =
0
Dy 40
) A°
B

The thick-thin decomposition of U\ f~% (L U RUCV) is (f%)*T.
We say that a rectangle in (f97)*T is “persistent” if it connects LI and R7".

Claim 1: Either
D} +D% <K or 3.Jwith Wio(J) > 2K.
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Claim 2: Either
A% +2B% < v(A° +2B°)

for some v < 1, or the width of persistent rectangles in (f97)* T is Wper < K.

Persistent rectangles are represented by a single proper homotopy class rel CP(f").

Al., passes through many gates G; C f~ 9 (H).

’
per

Claim 3: If Wper < K, then 3 piece J = f9(G;) such that Wio(J) > 2K.
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Shallow level

Caution! Our application of quasi-additivity law may bring us to shallower level.
At the shallow level (|I| < 1), we need a different approach to ensure that the new
degeneration is witnessed at a deeper level.

wave

Bubble-wave argument:

Given a wave of width K protecting a shallow level n comb. piece I,
3 level n + m comb. piece J with Wio(J) > C™K.
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Suppose Wio(I) = K where I is a comb. piece of shallow level n.
Introduce many level n + m pieces I; between I and (101)¢ with 10-separation.

Fro(I)

I hL I Is I Is (101)°

If curves in Fio(I) skip some I;, they induce a wave. Ignoring this case,
chop up Fio(I) via I;'s and apply Grotzsch inequality and conclude that 3 ¢ with

Wio(L;) > 2K.
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