Lecture 2: Herman rings

Willie Rush Lim

Stony Brook University

December 11, 2023

Bounded type rotation domains

Fix a bounded type irrational $\theta \in(0,1) . \exists B \in \mathbb{N}$ such that $\sup _{n} a_{n} \leq B$ where

$$
\theta=\left[0 ; a_{1}, a_{2}, a_{3}, \ldots\right]=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\ldots}}} .
$$

Theorem (Zhang '11)

Every invariant Siegel disk of a map $f \in \operatorname{Rat}_{d}$ with rotation number θ is a $K(d, B)$-quasidisk containing a critical point on the boundary.

Corollary

The boundary components of an invariant Herman ring of $f \in \operatorname{Rat}_{d}$ with rotation number θ and modulus μ are $K(d, B, \mu)$-quasicircle containing a critical point.

Herman rings of the simplest configuration

Let $\mathcal{H}=$ space of degree $d_{0}+d_{\infty}-1$ rational maps f that can be obtained by:

Theorem (A priori bounds)

The boundary components of the Herman ring of $f \in \mathcal{H}$ are $K\left(d_{0}, d_{\infty}, B\right)$-quasicircles. In particular, dilatation is independent of $\bmod (\mathbb{H})$.

Proof via near-degenerate regime

Let H be a boundary component of \mathbb{H}.
Endow H with the combinatorial metric, i.e. the unique normalized f-invariant metric.

Goal: Find constants ε and $\mathbf{K}>1$ (depending only on $\left.d_{0}, d_{\infty}, B\right)$ such that:
every interval $I \subset H$ of length $|I|<\varepsilon$ satisfies $W_{10}(I)<\mathbf{K}$.

Theorem (Amplification)

$$
\text { If } \text { there is an interval } I \subset H \text { with length }|I|<\varepsilon \text { and width } W_{10}(I)=\mathbf{K} \gg 1 \text {, }
$$ then

there is another interval $J \subset H$ with length $|J|<\varepsilon$ and width $W_{10}(J) \geq 2 \mathbf{K}$.
(All bounds depend only on d_{0}, d_{∞}, B.)

Herman scale vs. Siegel scale

Assume $\bmod (\mathbb{H})$ is very small. Given an interval $I \subset H \ldots$

- Siegel scale: $|I|<\bmod (\mathbb{H})$,
- Herman scale: $\bmod (\mathbb{H})<|I|<\varepsilon$.

At the Siegel scale, width of curves connecting I and $\partial \mathbb{H} \backslash H$ $=O(1)$.

The Herman scale is the main case.
Replace:

- H with $\mathbf{H}:=\overline{\mathbb{H}}$,
- intervals $I \subset H$ with "pieces" $\mathbf{I} \subset \mathbf{H}$,
- $W_{10}(I)$ with $W_{10}(\mathbf{I})$.

Strategy

Proof of

Assume \exists level n combinatorial piece I width $W_{\lambda}(I)=K$.
Step 1: Spreading around:

$$
\begin{array}{ccc}
\text { either } & W_{10}\left(f^{j}(I)\right) \geq 2 K & \text { or } \\
\text { for some } j . & W_{\lambda}\left(f^{j}(I)\right) \succ K \\
& \text { for all } j=1,2, \ldots, q_{n+1} .
\end{array}
$$

Step 2: Apply quasiadditivity law:
Set $N \approx 0.001 \lambda$ and consider $2 N+1$ islands

$$
J_{-N}, J_{-N+1}, \ldots, J_{0}, \ldots, J_{N-1}, J_{N}
$$

from the tiling $\left\{f^{j}(I)\right\}_{j}$ that are 10-separated from one another.
Set $U=\hat{\mathbb{C}} \backslash\left(\rho J_{0}\right)^{c}$, a disk containing λJ_{i} for all i.
Either

$$
\exists i \text { such that } W_{10}\left(J_{i}\right) \succ \sqrt{\lambda} K
$$

or

$$
W_{10}(P) \succ \sqrt{\lambda} K \text { where } \cup_{i} J_{i} \subset P
$$

Strategy

Proof of

Assume \exists level n combinatorial piece I with $W_{10}(I) \geq K$.
Step 1: Spreading around:

$$
W_{10}\left(f^{j}(I)\right) \succ K \quad \text { for all } j=1,2, \ldots q_{n+1}
$$

Step 2: Localization: either

$$
\exists \text { piece } J \text { where } W_{10}(J) \geq 2 K \text {, or }
$$

\exists pieces $L=f^{i}(I)$ and $R \subset(10 L)^{c}$ such that

$$
\operatorname{dist}(L, R) \asymp|R| \asymp|L| \quad \text { and } \quad \text { width }\left\{\gamma \in \mathcal{F}_{10}(L): \gamma \text { lands on } R\right\} \asymp K
$$

$(10 L)^{c}$

Two islands in a lake

Consider the disk $U=\widehat{\mathbb{C}} \backslash(\lambda L)^{c}$. Then, $W_{U}(L, R) \succ K$.

Pick high $r>n$. We define $\hat{U}, \hat{L}, \hat{R}$ by removing $\left(\lambda f^{q_{r}}(L)\right)^{c}, f^{q_{r}}(L)$, and $f^{q_{r}}(R)$.

Step 3: Either the symmetric difference in red gives $W_{10}(J) \geq 2 K$ or $W_{\lambda}(J) \succ K$, or

$$
W_{c a n}^{h}(U, L \cup R) \asymp W_{c a n}^{h}(\hat{U}, \hat{L} \cup \hat{R}) .
$$

Step 4: For large $r>n, \exists \delta(r) \rightarrow 0$ such that either
$\exists J$ where $W_{10}(J) \geq 2 K, \quad$ or $\quad W_{\text {can }}^{h}\left(\hat{U}^{q_{r}}, \hat{L}^{q_{r}} \cup \hat{R}^{q_{r}}\right) \leq \delta \cdot W_{\text {can }}^{h}(\hat{U}, \hat{L} \cup \hat{R})$.

From the green inclusion,

$$
W_{c a n}^{h}\left(\hat{U}^{q_{r}}, \hat{L}^{q_{r}} \cup \hat{R}^{q_{r}}\right)+W_{c a n}^{v}\left(\hat{U}^{q_{r}}, \hat{L}^{q_{r}} \cup \hat{R}^{q_{r}}\right) \geq W_{c a n}^{h}(U, L \cup R)-O(1)
$$

Step 5: $W_{\text {can }}^{v}\left(\hat{U}^{q_{r}}, \hat{L}^{q_{r}} \cup \hat{R}^{q_{r}}\right) \succ K$.

Step 6: By the covering lemma, $\exists J \in\{\hat{L}, \hat{R}\}$ such that either

$$
W_{10}(J) \geq 2 K \quad \text { or } \quad W_{\lambda}(J) \succ K
$$

Step 4: Widthlifting " Ω " \rightarrow width loss?

Notation: $W^{j}:=W_{c a n}^{h}\left(U^{j}, L^{j} \cup R^{j}\right)$.
KEY Proposition: $\exists \delta<1$ such that for large $r>n$,

$$
W^{0} \geq K \Longrightarrow \begin{gathered}
\exists J \text { where } W_{10}(J) \geq 2 K, \\
\text { or } \\
W^{q_{r}} \leq \delta \cdot W^{0}
\end{gathered}
$$

Proof: Split W^{j} into $A^{j}+B^{j}$.

Preliminary observation: $A^{j}+2 B^{j}$ is monotone.

Let $\mathrm{CV}=$ critical values of $f^{q_{r}}$ in U.

$$
f^{q_{r}}: U^{q_{r}} \backslash f^{-q_{r}}(L \cup R \cup \mathrm{CV}) \rightarrow U \backslash(L \cup R \cup \mathrm{CV})
$$

is an unbranched covering map of degree $d=d(\lambda)$.

Thick-thin decomposition \mathcal{T} of $U \backslash(L \cup R \cup \mathrm{CV})$:

The thick-thin decomposition of $U^{q_{r}} \backslash f^{-q_{r}}(L \cup R \cup \mathrm{CV})$ is $\left(f^{q_{r}}\right)^{*} \mathcal{T}$. We say that a rectangle in $\left(f^{q_{r}}\right)^{*} \mathcal{T}$ is "persistent" if it connects $L^{q_{r}}$ and $R^{q_{r}}$.

Claim 1: Either

$$
D_{L}^{0}+D_{R}^{0} \prec K \quad \text { or } \quad \exists J \text { with } W_{10}(J) \geq 2 K
$$

Claim 2: Either

$$
A^{q_{r}}+2 B^{q_{r}}<\nu\left(A^{0}+2 B^{0}\right)
$$

for some $\nu<1$, or the width of persistent rectangles in $\left(f^{q_{r}}\right)^{*} \mathcal{T}$ is $W_{\text {per }} \asymp K$.

Persistent rectangles are represented by a single proper homotopy class rel $\mathrm{CP}\left(f^{q_{r}}\right)$.

$A_{\text {per }}^{\prime}$ passes through many gates $G_{i} \subset f^{-q_{r}}(\mathbf{H})$.

Claim 3: If $W_{\text {per }} \asymp K$, then \exists piece $J=f^{q_{r}}\left(G_{i}\right)$ such that $W_{10}(J) \geq 2 K$.

Shallow level

Caution! Our application of quasi-additivity law may bring us to shallower level. At the shallow level $(|I| \asymp 1)$, we need a different approach to ensure that the new degeneration is witnessed at a deeper level.

Bubble-wave argument:
Given a wave of width K protecting a shallow level n comb. piece I, \exists level $n+m$ comb. piece J with $W_{10}(J) \geq C^{m} K$.

Suppose $W_{10}(I)=K$ where I is a comb. piece of shallow level n.
Introduce many level $n+m$ pieces I_{i} between I and $(10 I)^{c}$ with 10 -separation.

If curves in $\mathcal{F}_{10}(I)$ skip some I_{i}, they induce a wave. Ignoring this case, chop up $\mathcal{F}_{10}(I)$ via I_{i} 's and apply Grotzsch inequality and conclude that $\exists i$ with

$$
W_{10}\left(I_{i}\right) \geq 2 K
$$

