Lecture 2: Herman rings

Willie Rush Lim

Stony Brook University

December 11, 2023

Bounded type rotation domains

Fix a bounded type irrational $\theta \in (0,1)$. $\exists B \in \mathbb{N}$ such that $\sup_n a_n \leq B$ where

$$\theta = [0; a_1, a_2, a_3, \ldots] = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \ldots}}}$$

Theorem (Zhang '11)

Every invariant Siegel disk of a map $f \in \text{Rat}_d$ with rotation number θ is a K(d, B)-quasidisk containing a critical point on the boundary.

Corollary

The boundary components of an invariant Herman ring of $f \in \text{Rat}_d$ with rotation number θ and modulus μ are $K(d, B, \mu)$ -quasicircle containing a critical point.

Herman rings of the simplest configuration

Let $\mathcal{H} =$ space of degree $d_0 + d_\infty - 1$ rational maps f that can be obtained by:

Theorem (A priori bounds)

The boundary components of the Herman ring of $f \in \mathcal{H}$ are $K(d_0, d_\infty, B)$ -quasicircles. In particular, dilatation is independent of $mod(\mathbb{H})$. Let H be a boundary component of \mathbb{H} . Endow H with the combinatorial metric, i.e. the unique normalized f-invariant metric.

<u>Goal</u>: Find constants ε and $\mathbf{K} > 1$ (depending only on d_0, d_∞, B) such that:

every interval $I \subset H$ of length $|I| < \varepsilon$ satisfies $W_{10}(I) < \mathbf{K}$.

Theorem (Amplification)

lf

there is an interval $I \subset H$ with length $|I| < \varepsilon$ and width $W_{10}(I) = \mathbb{K} \gg 1$, then there is another interval $J \subset H$ with length $|J| < \varepsilon$ and width $W_{10}(J) \ge 2\mathbb{K}$.

(All bounds depend only on $d_0, d_\infty, B_.$)

Herman scale vs. Siegel scale

Assume $mod(\mathbb{H})$ is very small. Given an interval $I \subset H...$

- Siegel scale: $|I| < mod(\mathbb{H})$,
- Herman scale: $\operatorname{mod}(\mathbb{H}) < |I| < \varepsilon$.

At the Siegel scale,

width of curves connecting I and $\partial \mathbb{H} \setminus H = O(1)$.

The Herman scale is the **main** case. Replace:

- H with $\mathbf{H} := \overline{\mathbb{H}}$,
- intervals $I \subset H$ with "pieces" $I \subset H$,
- $W_{10}(I)$ with $W_{10}(I)$.

Strategy

Assume \exists level *n* combinatorial piece *I* width $W_{\lambda}(I) = K$.

Step 1: Spreading around:

either
$$\begin{array}{cc} W_{10}(f^j(I)) \geq 2K & W_{\lambda}(f^j(I)) \succ K \\ \text{for some } j. & \text{or} & \text{for all } j = 1, 2, \dots, q_{n+1}. \end{array}$$

Step 2: Apply quasiadditivity law:

Set $N \approx 0.001 \lambda$ and consider 2N + 1 islands

 $J_{-N}, J_{-N+1}, \ldots, J_0, \ldots, J_{N-1}, J_N$

from the tiling $\{f^j(I)\}_j$ that are 10-separated from one another. Set $U = \hat{\mathbb{C}} \setminus (\rho J_0)^c$, a disk containing λJ_i for all i. Either

$$\exists i \text{ such that } W_{10}(J_i) \succ \sqrt{\lambda}K_i$$

or

$$W_{10}(P) \succ \sqrt{\lambda} K$$
 where $\cup_i J_i \subset P$.

Strategy

Assume \exists level *n* combinatorial piece *I* with $W_{10}(I) \ge K$.

Step 1: Spreading around:

 $W_{10}(f^j(I)) \succ K$ for all $j = 1, 2, \dots, q_{n+1}$.

Step 2: Localization: either

$$\exists$$
 piece J where $W_{10}(J) \geq 2K$, or

 \exists pieces $L=f^i(I)$ and $R\subset (10L)^c$ such that

 $\mathsf{dist}(L,R) \asymp |R| \asymp |L| \quad \text{ and } \quad \mathsf{width}\{\gamma \in \mathcal{F}_{10}(L) : \gamma \text{ lands on } R\} \asymp K.$

Two islands in a lake

Consider the disk $U = \hat{\mathbb{C}} \setminus (\lambda L)^c$. Then, $W_U(L, R) \succ K$.

Pick high r > n. We define \hat{U} , \hat{L} , \hat{R} by removing $(\lambda f^{q_r}(L))^c$, $f^{q_r}(L)$, and $f^{q_r}(R)$.

<u>Step 3:</u> Either the symmetric difference in red gives $W_{10}(J) \ge 2K$ or $W_{\lambda}(J) \succ K$, or $W_{can}^{h}(U, L \cup R) \asymp W_{can}^{h}(\hat{U}, \hat{L} \cup \hat{R}).$

Step 4: For large r > n, $\exists \ \delta(r) \to 0$ such that either

 $\exists J \text{ where } W_{10}(J) \geq 2K, \quad \text{ or } \quad W^h_{can}(\hat{U}^{q_r}, \hat{L}^{q_r} \cup \hat{R}^{q_r}) \leq \delta \cdot W^h_{can}(\hat{U}, \hat{L} \cup \hat{R}).$

From the green inclusion,

 $W^{h}_{can}(\hat{U}^{q_{r}},\hat{L}^{q_{r}}\cup\hat{R}^{q_{r}})+W^{v}_{can}(\hat{U}^{q_{r}},\hat{L}^{q_{r}}\cup\hat{R}^{q_{r}})\geq W^{h}_{can}(U,L\cup R)-O(1).$

Step 5: $W_{can}^{v}(\hat{U}^{q_r}, \hat{L}^{q_r} \cup \hat{R}^{q_r}) \succ K.$

Step 6: By the covering lemma, $\exists J \in {\hat{L}, \hat{R}}$ such that either

 $W_{10}(J) \ge 2K$ or $W_{\lambda}(J) \succ K$.

Step 4: Widthlifting $X \rightarrow$ width loss?

Notation: $W^j := W^h_{can}(U^j, L^j \cup R^j).$

KEY Proposition: $\exists \ \delta < 1$ such that for large r > n,

<u>Proof:</u> Split W^j into $A^j + B^j$.

Preliminary observation: $A^j + 2B^j$ is monotone.

Let CV = critical values of f^{q_r} in U.

$$f^{q_r}: U^{q_r} \setminus f^{-q_r}(L \cup R \cup \mathsf{CV}) \to U \setminus (L \cup R \cup \mathsf{CV})$$

is an unbranched covering map of degree $d = d(\lambda)$.

The thick-thin decomposition of $U^{q_r} \setminus f^{-q_r}(L \cup R \cup \mathsf{CV})$ is $(f^{q_r})^* \mathcal{T}$. We say that a rectangle in $(f^{q_r})^* \mathcal{T}$ is "persistent" if it connects L^{q_r} and R^{q_r} .

Claim 1: Either

$$D_L^0 + D_R^0 \prec K$$
 or $\exists J \text{ with } W_{10}(J) \ge 2K.$

Claim 2: Either

$$A^{q_r} + 2B^{q_r} < \nu(A^0 + 2B^0)$$

for some $\nu < 1$, or the width of persistent rectangles in $(f^{q_r})^* \mathcal{T}$ is $W_{\text{per}} \simeq K$.

Persistent rectangles are represented by a single proper homotopy class rel $CP(f^{q_r})$.

 A'_{per} passes through many gates $G_i \subset f^{-q_r}(\mathbf{H})$.

<u>Claim 3:</u> If $W_{per} \simeq K$, then \exists piece $J = f^{q_r}(G_i)$ such that $W_{10}(J) \ge 2K$.

Shallow level

<u>Caution!</u> Our application of quasi-additivity law may bring us to shallower level. At the shallow level ($|I| \approx 1$), we need a different approach to ensure that the new degeneration is witnessed at a deeper level.

Bubble-wave argument:

Given a wave of width K protecting a shallow level n comb. piece I, \exists level n + m comb. piece J with $W_{10}(J) \ge C^m K$. Suppose $W_{10}(I) = K$ where I is a comb. piece of shallow level n.

Introduce many level n + m pieces I_i between I and $(10I)^c$ with 10-separation.

If curves in $\mathcal{F}_{10}(I)$ skip some I_i , they induce a wave. Ignoring this case, chop up $\mathcal{F}_{10}(I)$ via I_i 's and apply Grotzsch inequality and conclude that $\exists i$ with

 $W_{10}(I_i) \ge 2K.$