Degeneration of Herman rings

Willie Rush Lim

Stony Brook University

Geometry & Topology Seminar Brown University January 24, 2024

QC maps and Quasicircles

A K-quasiconformal (qc) map $f: X \to X$ is an orientation-preserving homeomorphism of a Riemann surface X sending a (measurable) field of circles to a field of ellipses of eccentricity bounded by $K \ge 1$.

QC maps and Quasicircles

A K-quasiconformal (qc) map $f: X \to X$ is an orientation-preserving homeomorphism of a Riemann surface X sending a (measurable) field of circles to a field of ellipses of eccentricity bounded by $K \ge 1$.

A *K*-quasidisk is the image of the unit disk $\mathbb{D} \subset \hat{\mathbb{C}}$ under a *K*-qc map on $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$. Its boundary is called a *K*-quasicircle.

QC maps and Quasicircles

A K-quasiconformal (qc) map $f: X \to X$ is an orientation-preserving homeomorphism of a Riemann surface X sending a (measurable) field of circles to a field of ellipses of eccentricity bounded by $K \ge 1$.

A *K*-quasidisk is the image of the unit disk $\mathbb{D} \subset \hat{\mathbb{C}}$ under a *K*-qc map on $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$. Its boundary is called a *K*-quasicircle.

- Moduli spaces of Riemann surfaces can be described in terms of qc maps.

- The universal Teichmüller space can be described as the space of quasicircles.
- Quasicircles appear naturally in the study of Kleinian groups and rational maps.

Rotation domains

A maximal invariant domain U of a holomorphic map f is called a rotation domain if $f|_U$ is conjugate to irrational rotation $R_{\theta}(z) = e^{2\pi i \theta} z$.

There are only 2 types:

- U is simply connected, i.e. a Siegel disk;
- **2** *U* is an annulus, i.e. a Herman ring.

Rotation domains

A maximal invariant domain U of a holomorphic map f is called a rotation domain if $f|_U$ is conjugate to irrational rotation $R_{\theta}(z) = e^{2\pi i \theta} z$.

There are only 2 types:

- U is simply connected, i.e. a Siegel disk;
- **2** *U* is an annulus, i.e. a **Herman ring**.

Conjecture:

The boundary components of rotation domains of rational maps are Jordan curves.

Deforming invariant annuli

Unlike Siegel disks, Herman rings come with a natural "Teichmüller space".

Two ways of deforming a Herman ring U:

- **③** Radial stretch, i.e. increase/decrease mod(U),
- **2** Twist ∂U

Cutting U along a radial line gives us a rectangle (where the horizontal sides are to be identified). The two moves above correspond to:

- Vertical stretch,
- e Horizontal shear.

Deforming invariant annuli

Unlike Siegel disks, Herman rings come with a natural "Teichmüller space".

Two ways of deforming a Herman ring U:

- **(**) Radial stretch, i.e. increase/decrease mod(U),
- **2** Twist ∂U

Cutting U along a radial line gives us a rectangle (where the horizontal sides are to be identified). The two moves above correspond to:

- Vertical stretch,
- e Horizontal shear.

Naturally, the "moduli space" of (f, U) is isomorphic to $\mathbb{R}_{>0} \times S^1$.

Question: What happens at the boundary of the "moduli space"?

- When $mod(U) \rightarrow \infty$, this is easy;
- When $mod(U) \rightarrow 0, ...?$

Fix an irrational $\theta \in (0, 1)$. Assume it is of **bounded type**, i.e. there is $B \in \mathbb{N}$ such that

$$\sup_{n\geq 1} a_n \leq B \qquad \text{where} \qquad \theta = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}}.$$

E.g. golden mean $\frac{\sqrt{5}-1}{2} = \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}$

Fix an irrational $\theta \in (0,1)$. Assume it is of bounded type, i.e. there is $B \in \mathbb{N}$ such that

$$\sup_{n \ge 1} a_n \le B \quad \text{where} \quad \theta = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}}.$$

E.g. golden mean $\frac{\sqrt{5}-1}{2} = \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}$

Theorem (G.F. Zhang '11)

If U is a rotation domain of a rational map $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ with rotation number θ , every component of ∂U is a quasicircle containing a critical point.

Fix $d_0, d_\infty \geq 2$. Consider the family \mathcal{H} of degree $d_0 + d_\infty - 1$ rational maps f where

- 0 and ∞ are critical fixed points with local degree d_0 and d_∞ ,
- f has a Herman ring \mathbb{H}_f of rotation number θ ,
- all other critical points are on $\partial \mathbb{H}_f$.

Theorem (A Priori Bounds)

For all $f \in \mathcal{H}$, the boundary of \mathbb{H}_f consists of K-quasicircles, where K depends only on $\deg(f)$ and B and not on $mod(\mathbb{H}_f)$.

Let *H* be a boundary component of the Herman ring of $f \in \mathcal{H}$. Equip *H* with the unique normalized *f*-invariant metric. Let *H* be a boundary component of the Herman ring of $f \in \mathcal{H}$. Equip *H* with the unique normalized *f*-invariant metric.

I = an interval in H of (combinatorial) length |I| < 0.1. 10I = the interval of length 10|I| having the same midpoint as I. $W_{10}(I) =$ the extremal width of curves connecting I and $H \setminus 10I$.

How to prove a priori bounds?

Let *H* be a boundary component of the Herman ring of $f \in \mathcal{H}$. Equip *H* with the unique normalized *f*-invariant metric.

I = an interval in H of (combinatorial) length |I| < 0.1. 10I = the interval of length 10|I| having the same midpoint as I. $W_{10}(I) =$ the extremal width of curves connecting I and $H \setminus 10I$.

 $W_{10}(I)$ encodes the local (near-)degeneration of H near the interval I.

Near-Degenerate Regime

To prove a priori bounds, it is sufficient to find constants ε and **K** depending only on B, d_0, d_∞ such that:

```
every interval I \subset H of length |I| < \varepsilon satisfies W_{10}(I) < K.
```

To prove a priori bounds, it is sufficient to find constants ε and **K** depending only on B, d_0, d_∞ such that:

```
every interval I \subset H of length |I| < \varepsilon satisfies W_{10}(I) < K.
```

Our goal is reduced to showing:

Theorem (Amplification)

lf

there is an interval $I \subset H$ with length $|I| \ll 1$ and width $W_{10}(I) = \mathbf{K} \gg 1$, then

there is another interval $J \subset H$ with length $|J| \ll 1$ and width $W_{10}(J) \ge 2K$.

(All bounds depend only on d_0, d_∞, B .)

To prove a priori bounds, it is sufficient to find constants ε and **K** depending only on B, d_0, d_∞ such that:

```
every interval I \subset H of length |I| < \varepsilon satisfies W_{10}(I) < K.
```

Our goal is reduced to showing:

```
Theorem (Amplification)
```

lf

there is an interval $I \subset H$ with length $|I| \ll 1$ and width $W_{10}(I) = \mathsf{K} \gg 1,$ then

there is another interval $J \subset H$ with length $|J| \ll 1$ and width $W_{10}(J) \ge 2K$.

(All bounds depend only on d_0, d_∞, B .)

The proof relies on the near-degenerate machinery, including ideas from: Kahn-Lyubich '05, Kahn '06, and Dudko-Lyubich '22.

Rotation curves

An invariant curve $X \subset \hat{\mathbb{C}}$ of a holomorphic map f is a rotation curve if $f|_X$ is conjugate to irrational rotation.

If X is not contained in the closure of a rotation domain, we call it a Herman curve.

Rotation curves

An invariant curve $X \subset \hat{\mathbb{C}}$ of a holomorphic map f is a rotation curve if $f|_X$ is conjugate to irrational rotation.

If X is not contained in the closure of a rotation domain, we call it a Herman curve.

Trivial example: For any irrational θ , there is a unique $\zeta_{\theta} \in \mathbb{T}$ such that the unit circle is a Herman curve of rotation number θ for the rational map

Rotation curves

An invariant curve $X \subset \hat{\mathbb{C}}$ of a holomorphic map f is a rotation curve if $f|_X$ is conjugate to irrational rotation.

If X is not contained in the closure of a rotation domain, we call it a Herman curve.

Trivial example: For any irrational θ , there is a unique $\zeta_{\theta} \in \mathbb{T}$ such that the unit circle is a Herman curve of rotation number θ for the rational map

Question: Can non-trivial Herman curves exist?

Theorem (Realization)

Given any points

$$a_1,\ldots,a_{d_0-1},b_1,\ldots,b_{d_\infty-1}\in \mathcal{S}^1,$$

there exists a rational map f in $\partial \mathcal{H}$ admitting a Herman curve **H** such that $rot(f|_{H}) = \theta$ and in linearizing coordinates, the inner critical points of $f|_{H}$ are a_1, \ldots, a_{d_0-1} , and the outer critical points are $b_1, \ldots, b_{d_{\infty}-1}$. Theorem (Realization)

Given any points

$$a_1,\ldots,a_{d_0-1},b_1,\ldots,b_{d_\infty-1}\in S^1,$$

there exists a rational map f in $\partial \mathcal{H}$ admitting a Herman curve **H** such that $rot(f|_{H}) = \theta$ and in linearizing coordinates, the inner critical points of $f|_{H}$ are a_1, \ldots, a_{d_0-1} , and the outer critical points are $b_1, \ldots, b_{d_{\infty}-1}$.

Unicritical example:

 \exists a rational map f_1 in \mathcal{H} admitting a Herman ring \mathbb{H}_1 with inner and outer critical points combinatorially positioned at a_1, \ldots, a_{d_0-1} and $b_1, \ldots, b_{d_{\infty}-1}$.

 \exists a rational map f_1 in \mathcal{H} admitting a Herman ring \mathbb{H}_1 with inner and outer critical points combinatorially positioned at a_1, \ldots, a_{d_0-1} and $b_1, \ldots, b_{d_{\infty}-1}$.

By QC deformation, \exists 1-par family $\{f_t\}_{0 < t \leq 1} \subset \mathcal{H}$ where f_t has a Herman ring \mathbb{H}_t with the same combinatorics and $mod(\mathbb{H}_t) \to 0$ as $t \to 0$.

 \exists a rational map f_1 in \mathcal{H} admitting a Herman ring \mathbb{H}_1 with inner and outer critical points combinatorially positioned at a_1, \ldots, a_{d_0-1} and $b_1, \ldots, b_{d_{\infty}-1}$.

By QC deformation, \exists 1-par family $\{f_t\}_{0 < t \leq 1} \subset \mathcal{H}$ where f_t has a Herman ring \mathbb{H}_t with the same combinatorics and $mod(\mathbb{H}_t) \to 0$ as $t \to 0$.

By a priori bounds,

- $\partial \mathbb{H}_t$ are *K*-quasicircles for all *t*;
- ${f_t}_{0 < t \le 1}$ is pre-compact in $Rat_{d_0+d_{\infty}-1}$.

 \exists a rational map f_1 in \mathcal{H} admitting a Herman ring \mathbb{H}_1 with inner and outer critical points combinatorially positioned at a_1, \ldots, a_{d_0-1} and $b_1, \ldots, b_{d_{\infty}-1}$.

By QC deformation, \exists 1-par family $\{f_t\}_{0 < t \leq 1} \subset \mathcal{H}$ where f_t has a Herman ring \mathbb{H}_t with the same combinatorics and $mod(\mathbb{H}_t) \to 0$ as $t \to 0$.

By a priori bounds,

- $\partial \mathbb{H}_t$ are *K*-quasicircles for all *t*;
- $\{f_t\}_{0 < t \le 1}$ is pre-compact in $\operatorname{Rat}_{d_0 + d_\infty 1}$.

<u>Result</u>: $f_0 = \lim_{t \to 0} f_t$ exists and has a Herman curve with the same combinatorics as f_1 .

Description of $\partial \mathcal{H}$

Theorem (Rigidity)

If two rational maps f,g in $\partial \mathcal{H}$ are combinatorially equivalent, then

 $f = L \circ g \circ L^{-1}$

for some linear map $L(z) = \lambda z$.

Description of $\partial \mathcal{H}$

Theorem (Rigidity)

If two rational maps f,g in $\partial \mathcal{H}$ are combinatorially equivalent, then

$$f = L \circ g \circ L^{-1}$$

for some linear map $L(z) = \lambda z$.

An *invariant line field* is a measurable collection of 1-D subspaces $\{L_x \subset T_x \hat{\mathbb{C}}\}_{x \in E}$ where

- the support *E* is a positive-measure totally invariant subset of $\hat{\mathbb{C}}$,
- for a.e. $x \in E$, $df_x(L_x) = L_{f(x)}$.

In the proof of rigidity, we show that every $f \in \mathcal{H}$ admits no invariant line field.

Description of $\partial \mathcal{H}$

Theorem (Rigidity)

If two rational maps f,g in $\partial \mathcal{H}$ are combinatorially equivalent, then

$$f = L \circ g \circ L^{-1}$$

for some linear map $L(z) = \lambda z$.

An *invariant line field* is a measurable collection of 1-D subspaces $\{L_x \subset T_x \hat{\mathbb{C}}\}_{x \in E}$ where

• the support *E* is a positive-measure totally invariant subset of $\hat{\mathbb{C}}$,

• for a.e.
$$x \in E$$
, $df_x(L_x) = L_{f(x)}$.

In the proof of rigidity, we show that every $f \in \mathcal{H}$ admits no invariant line field.

Corollary

 $\partial \mathcal{H}/_{\sim}$ is homeomorphic to

$${\sf SP}^{d_0-1}({\it S}^1) imes {\sf SP}^{d_\infty-1}({\it S}^1)/_{\sf rigid\ rotation}$$

which is a compact connected topological orbifold of dimension $d_0 + d_{\infty} - 3$.

What's next?

Recall the unicritical example:

is characterized by the data on the right.

In general, for any bounded type θ , \exists ! parameter c_{θ} such that $F_{c_{\theta}}$ has a Herman curve with rotation number θ .

Parameter space picture

Bifurcation locus of $\{F_c\}$ magnified around the parameter $c_* = c_{\theta}$ where θ =golden mean.

Conjecture: The bifurcation locus of $\{F_c\}$ is self-similar at c_* .

Thank you!