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QC maps and Quasicircles

A K-quasiconformal (qc) map f: X — X is an orientation-preserving homeomorphism of
a Riemann surface X sending a (measurable) field of circles to a field of ellipses of
eccentricity bounded by K > 1.

2/32



QC maps and Quasicircles

A K-quasiconformal (qc) map f: X — X is an orientation-preserving homeomorphism of
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eccentricity bounded by K > 1.

D _ Z

A K-quasidisk is the image of the unit disk D C € under a K-qc map on € = CU {o0}.
Its boundary is called a K-quasicircle.

— cusp _<
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QC maps and Quasicircles

A K-quasiconformal (qc) map f: X — X is an orientation-preserving homeomorphism of
a Riemann surface X sending a (measurable) field of circles to a field of ellipses of
eccentricity bounded by K > 1.

D _ Z

A K-quasidisk is the image of the unit disk D C € under a K-qc map on € = CU {o0}.
Its boundary is called a K-quasicircle.

— cusp _<

- Moduli spaces of Riemann surfaces can be described in terms of qc maps.
- The universal Teichmiiller space can be described as the space of quasicircles.
- Quasicircles appear naturally in the study of Kleinian groups and rational maps.
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Rotation domains

A maximal invariant domain U of a holomorphic map f is called a rotation domain
if f|y is conjugate to irrational rotation Ry(z) = ™" z.

There are only 2 types:
@ U is simply connected, i.e. a Siegel disk;
@ U is an annulus, i.e. a Herman ring.
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Rotation domains

A maximal invariant domain U of a holomorphic map f is called a rotation domain
if f|u is conjugate to irrational rotation Rs(z) = ™" z.
There are only 2 types:

@ U is simply connected, i.e. a Siegel disk;

@ U is an annulus, i.e. a Herman ring.

74
f(z) = ez’”fz21274 where t ~ 0.61517
— 4z

f(z) = 22+ c where ¢ &~ —0.3905 — 0.5868i

Conjecture:
The boundary components of rotation domains of rational maps are Jordan curves.
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Deforming invariant annuli
Unlike Siegel disks, Herman rings come with a natural “Teichmiiller space”.

Two ways of deforming a Herman ring U:
@ Radial stretch, i.e. increase/decrease mod(U),
@ Twist OU

Cutting U along a radial line gives us a rectangle (where the horizontal sides are to be
identified). The two moves above correspond to:

@ Vertical stretch,

@ Horizontal shear.
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Deforming invariant annuli
Unlike Siegel disks, Herman rings come with a natural “Teichmiiller space”.

Two ways of deforming a Herman ring U:
@ Radial stretch, i.e. increase/decrease mod(U),
@ Twist OU

Cutting U along a radial line gives us a rectangle (where the horizontal sides are to be
identified). The two moves above correspond to:

@ Vertical stretch,

@ Horizontal shear.

Naturally, the “moduli space* of (f, U) is isomorphic to Rxg x S*.
Question: What happens at the boundary of the “moduli space"?
e When mod(U) — oo, this is easy;

e When mod(U) — 0, ...7
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Bounded type assumption

Fix an irrational 8 € (0,1). Assume it is of bounded type, i.e. there is B € N such that

1
supan < B where 0= I
n>1 ay + il
a2+a3+...
_ 1
E.g. golden mean \/32 e I
1+ 7
+1+...
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Bounded type assumption

Fix an irrational 8 € (0,1). Assume it is of bounded type, i.e. there is B € N such that

1
supan < B where 0= T
n>1 a+—
at ag+...
_ 1
E.g. golden mean \/32 e I
+1+...

Theorem (G.F. Zhang '11)

If U is a rotation domain of a rational map f : € — C with rotation number 6, every
component of QU is a quasicircle containing a critical point.
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Herman rings of the simplest configuration

Fix db, doc > 2. Consider the family H of degree dy + dsc — 1 rational maps f where
@ 0 and oo are critical fixed points with local degree dy and d,
o f has a Herman ring Hy of rotation number 6,

o all other critical points are on OH.

Theorem (A Priori Bounds)

For all f € H, the boundary of H¢ consists of K-quasicircles, where K depends only on
deg(f) and B and not on mod(Hy).
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How to prove a priori bounds?

Let H be a boundary component of the Herman ring of f € H.
Equip H with the unique normalized f-invariant metric.
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How to prove a priori bounds?

Let H be a boundary component of the Herman ring of f € H.
Equip H with the unique normalized f-invariant metric.

I = an interval in H of (combinatorial) length |/| < 0.1.

10/ = the interval of length 10|/| having the same midpoint as /.

Wio(I) = the extremal width of curves connecting / and H\10/.
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How to prove a priori bounds?

Let H be a boundary component of the Herman ring of f € H.
Equip H with the unique normalized f-invariant metric.

I = an interval in H of (combinatorial) length |/| < 0.1.
10/ = the interval of length 10|/| having the same midpoint as /.
Wio(I) = the extremal width of curves connecting / and H\10/.

small Wyo(/) large Wio(/)

Wio (1) encodes the local (near-)degeneration of H near the interval /.
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Near-Degenerate Regime
To prove a priori bounds, it is sufficient to find constants € and K depending only on
B, do, doo such that:

every interval | C H of length |/| < ¢ satisfies Wio(/) < K.
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Near-Degenerate Regime

To prove a priori bounds, it is sufficient to find constants € and K depending only on
B, do, doo such that:

every interval | C H of length |/| < ¢ satisfies Wio(/) < K.

Our goal is reduced to showing:

Theorem (Amplification)
If
there is an interval | C H with length |I| < 1 and width Wio(l) = K > 1,
then
there is another interval J C H with length |J| < 1 and width Wyo(J) > 2K.

(All bounds depend only on dy, doo, B.)
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Near-Degenerate Regime

To prove a priori bounds, it is sufficient to find constants € and K depending only on
B, do, doo such that:

every interval | C H of length |/| < ¢ satisfies Wio(/) < K.

Our goal is reduced to showing:

Theorem (Amplification)
If
there is an interval | C H with length |I| < 1 and width Wio(l) = K > 1,
then
there is another interval J C H with length |J| < 1 and width Wyo(J) > 2K.

(All bounds depend only on dy, doo, B.)

The proof relies on the near-degenerate machinery, including ideas from:
Kahn-Lyubich '05, Kahn '06, and Dudko-Lyubich '22.
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Rotation curves

An invariant curve X C C of a holomorphic map f is a rotation curve if f|x is conjugate
to irrational rotation.

If X is not contained in the closure of a rotation domain, we call it a Herman curve.
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Rotation curves

An invariant curve X C C of a holomorphic map f is a rotation curve if f|x is conjugate
to irrational rotation.

If X is not contained in the closure of a rotation domain, we call it a Herman curve.
Trivial example: For any irrational 6, there is a unique (p € T such that the unit circle is

a Herman curve of rotation number 6 for the rational map

22—3

fo(z) = Goz

1-3z°
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Rotation curves

An invariant curve X C C of a holomorphic map f is a rotation curve if f|x is conjugate
to irrational rotation.

If X is not contained in the closure of a rotation domain, we call it a Herman curve.
Trivial example: For any irrational 6, there is a unique (p € T such that the unit circle is

a Herman curve of rotation number 6 for the rational map

22—3

fo(z) = Goz

1-3z°

Question: Can non-trivial Herman curves exist?
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Non-trivial Herman curves

Theorem (Realization)

Given any points
1
31,...,ado_l,b1,...,bdoo_1 S} 9

there exists a rational map f in OH admitting a Herman curve H such that rot(f|n) = 0
and in linearizing coordinates, the inner critical points of f|y are ai, ..., aqy—1, and the
outer critical points are by, ..., b4, 1.
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Non-trivial Herman curves

Theorem (Realization)

Given any points

1
31,...,ado_l,bl,...,bdoo_l (%) s

there exists a rational map f in OH admitting a Herman curve H such that rot(f|n) = 0

and in linearizing coordinates, the inner critical points of f|y are ai, ..., aqy—1, and the

outer critical points are by, ..., b4, 1.

Unicritical example:

6 = golden mean
2 inner critical pts

1 outer critical pt

3 4—z
1—4z+622
c. &~ —1.144208 — 0.964454

Fe,(2) = cuz
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Proof of realization

X.G. Wang '12 :
3 a rational map f; in ‘H admitting a Herman ring H; with inner and outer critical points
combinatorially positioned at ai,...,a4-1 and by,..., by —1.
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Proof of realization

X.G. Wang '12 :
3 a rational map f; in ‘H admitting a Herman ring H; with inner and outer critical points
combinatorially positioned at ai,...,a4-1 and by,..., by —1.

By QC deformation,
3 1-par family {ft}o<t§1 C H where f; has a Herman ring H; with the same
combinatorics and mod(H;) — 0 as t — 0.
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By QC deformation,
3 1-par family {ft}o<t§1 C H where f; has a Herman ring H; with the same
combinatorics and mod(H;) — 0 as t — 0.

By a priori bounds,

o JH; are K-quasicircles for all t;

o {fi}o<t<1 is pre-compact in Ratgy4d. —1-
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Proof of realization

X.G. Wang '12 :
3 a rational map f; in ‘H admitting a Herman ring H; with inner and outer critical points
combinatorially positioned at ai,...,a4-1 and by,..., by —1.

By QC deformation,
3 1-par family {ft}o<t§1 C H where f; has a Herman ring H; with the same
combinatorics and mod(H;) — 0 as t — 0.

By a priori bounds,
o JH; are K-quasicircles for all t;

o {fi}o<t<1 is pre-compact in Ratgy4d. —1-

Result: fo = lim f; exists and has a Herman curve with the same combinatorics as fi.
t—0

26/32



Description of OH

Theorem (Rigidity)
If two rational maps f, g in OH are combinatorially equivalent, then
f=Logo L

for some linear map L(z) = \z.
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Description of OH

Theorem (Rigidity)

If two rational maps f, g in OH are combinatorially equivalent, then
f=Logo L=t

for some linear map L(z) = \z.

An invariant line field is a measurable collection of 1-D subspaces {L, C TC}.ce where
o the support E is a positive-measure totally invariant subset of C,
o forae x € E, dfi(Ls) = L.

In the proof of rigidity, we show that every f € H admits no invariant line field.
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Description of OH

Theorem (Rigidity)

If two rational maps f, g in OH are combinatorially equivalent, then
f=Logo L=t

for some linear map L(z) = \z.

An invariant line field is a measurable collection of 1-D subspaces {L, C TC}.ce where
o the support E is a positive-measure totally invariant subset of C,
o forae x € E, dfi(Ls) = L.

In the proof of rigidity, we show that every f € H admits no invariant line field.

Corollary

OHM/~ is homeomorphic to
SPdO_l(Sl) X Spdw_l(sl)/rigid rotation

which is a compact connected topological orbifold of dimension do + doo — 3.
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What's next?

Recall the unicritical example:

B . : ; - g
g o ’ ' ‘ 0 = golden mean

2 inner critical pts

1 outer critical pt

et Tk F 4—z
e . =z —
% : ;% ‘ 1—4z+4 622

¥ ,x' B ‘ ci & —1.144208 — 0.964454i
The 1-par family of degree 4 rational maps °
4—z 3:1 ‘ = 2:1
() ‘1 —4z+4 622 O O
is characterized by the data on the right. ¢ e ®
0 1 00

In general, for any bounded type 6, 3! parameter ¢y such that F, has a Herman curve
with rotation number 6.
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Parameter space picture

Bifurcation locus of {F.} magnified around the parameter ¢, = cg where §=golden mean.

Conjecture: The bifurcation locus of {F.} is self-similar at c..
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Thank you!
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