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QC maps and Quasicircles

A K-quasiconformal (qc) map f : X → X is an orientation-preserving homeomorphism of
a Riemann surface X sending a (measurable) field of circles to a field of ellipses of
eccentricity bounded by K ≥ 1.

A K-quasidisk is the image of the unit disk D ⊂ Ĉ under a K -qc map on Ĉ = C ∪ {∞}.
Its boundary is called a K-quasicircle.

- Moduli spaces of Riemann surfaces can be described in terms of qc maps.
- The universal Teichmüller space can be described as the space of quasicircles.
- Quasicircles appear naturally in the study of Kleinian groups and rational maps.
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Its boundary is called a K-quasicircle.

- Moduli spaces of Riemann surfaces can be described in terms of qc maps.
- The universal Teichmüller space can be described as the space of quasicircles.
- Quasicircles appear naturally in the study of Kleinian groups and rational maps.

3 / 32



QC maps and Quasicircles

A K-quasiconformal (qc) map f : X → X is an orientation-preserving homeomorphism of
a Riemann surface X sending a (measurable) field of circles to a field of ellipses of
eccentricity bounded by K ≥ 1.

A K-quasidisk is the image of the unit disk D ⊂ Ĉ under a K -qc map on Ĉ = C ∪ {∞}.
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Rotation domains

A maximal invariant domain U of a holomorphic map f is called a rotation domain
if f |U is conjugate to irrational rotation Rθ(z) = e2πiθz.

There are only 2 types:
1 U is simply connected, i.e. a Siegel disk;
2 U is an annulus, i.e. a Herman ring.

f (z) = z2 + c where c ≈ −0.3905− 0.5868i

f (z) = e2πitz2 z − 4
1 − 4z

where t ≈ 0.61517

Conjecture:
The boundary components of rotation domains of rational maps are Jordan curves.
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Deforming invariant annuli

Unlike Siegel disks, Herman rings come with a natural “Teichmüller space“.

Two ways of deforming a Herman ring U:
1 Radial stretch, i.e. increase/decrease mod(U),
2 Twist ∂U

Cutting U along a radial line gives us a rectangle (where the horizontal sides are to be
identified). The two moves above correspond to:

1 Vertical stretch,
2 Horizontal shear.

Naturally, the “moduli space“ of (f ,U) is isomorphic to R>0 × S1.

Question: What happens at the boundary of the “moduli space“?
When mod(U) → ∞, this is easy;
When mod(U) → 0, ...?

7 / 32



Deforming invariant annuli

Unlike Siegel disks, Herman rings come with a natural “Teichmüller space“.

Two ways of deforming a Herman ring U:
1 Radial stretch, i.e. increase/decrease mod(U),
2 Twist ∂U

Cutting U along a radial line gives us a rectangle (where the horizontal sides are to be
identified). The two moves above correspond to:

1 Vertical stretch,
2 Horizontal shear.

Naturally, the “moduli space“ of (f ,U) is isomorphic to R>0 × S1.

Question: What happens at the boundary of the “moduli space“?
When mod(U) → ∞, this is easy;
When mod(U) → 0, ...?

8 / 32



Bounded type assumption

Fix an irrational θ ∈ (0, 1). Assume it is of bounded type, i.e. there is B ∈ N such that

sup
n≥1

an ≤ B where θ =
1

a1 +
1

a2+
1

a3+...

.

E.g. golden mean
√

5−1
2 =

1
1 + 1

1+ 1
1+...

Theorem (G.F. Zhang ’11)

If U is a rotation domain of a rational map f : Ĉ → Ĉ with rotation number θ, every
component of ∂U is a quasicircle containing a critical point.
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Herman rings of the simplest configuration

Fix d0, d∞ ≥ 2. Consider the family H of degree d0 + d∞ − 1 rational maps f where
0 and ∞ are critical fixed points with local degree d0 and d∞,
f has a Herman ring Hf of rotation number θ,
all other critical points are on ∂Hf .

Theorem (A Priori Bounds)
For all f ∈ H, the boundary of Hf consists of K-quasicircles, where K depends only on
deg(f ) and B and not on mod(Hf ).
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How to prove a priori bounds?

Let H be a boundary component of the Herman ring of f ∈ H.
Equip H with the unique normalized f -invariant metric.

I = an interval in H of (combinatorial) length |I| < 0.1.
10I = the interval of length 10|I| having the same midpoint as I.
W10(I) = the extremal width of curves connecting I and H\10I.

small W10(I) large W10(I)

W10(I) encodes the local (near-)degeneration of H near the interval I.
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Near-Degenerate Regime

To prove a priori bounds, it is sufficient to find constants ε and K depending only on
B, d0, d∞ such that:

every interval I ⊂ H of length |I| < ε satisfies W10(I) < K.

Our goal is reduced to showing:

Theorem (Amplification)
If

there is an interval I ⊂ H with length |I| � 1 and width W10(I) = K � 1,
then

there is another interval J ⊂ H with length |J| � 1 and width W10(J) ≥ 2K.
(All bounds depend only on d0, d∞, B.)

The proof relies on the near-degenerate machinery, including ideas from:
Kahn-Lyubich ’05, Kahn ’06, and Dudko-Lyubich ’22.
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Rotation curves

An invariant curve X ⊂ Ĉ of a holomorphic map f is a rotation curve if f |X is conjugate
to irrational rotation.

If X is not contained in the closure of a rotation domain, we call it a Herman curve.

Trivial example: For any irrational θ, there is a unique ζθ ∈ T such that the unit circle is
a Herman curve of rotation number θ for the rational map

fθ(z) = ζθz2 z − 3
1 − 3z .

Question: Can non-trivial Herman curves exist?
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Non-trivial Herman curves

Theorem (Realization)
Given any points

a1, . . . , ad0−1, b1, . . . , bd∞−1 ∈ S1,

there exists a rational map f in ∂H admitting a Herman curve H such that rot(f |H) = θ
and in linearizing coordinates, the inner critical points of f |H are a1, . . . , ad0−1, and the
outer critical points are b1, . . . , bd∞−1.

Unicritical example:

θ = golden mean
2 inner critical pts
1 outer critical pt

Fc∗ (z) = c∗z3 4 − z
1 − 4z + 6z2

c∗ ≈ −1.144208 − 0.964454i

21 / 32



Non-trivial Herman curves

Theorem (Realization)
Given any points

a1, . . . , ad0−1, b1, . . . , bd∞−1 ∈ S1,

there exists a rational map f in ∂H admitting a Herman curve H such that rot(f |H) = θ
and in linearizing coordinates, the inner critical points of f |H are a1, . . . , ad0−1, and the
outer critical points are b1, . . . , bd∞−1.

Unicritical example:

θ = golden mean
2 inner critical pts
1 outer critical pt

Fc∗ (z) = c∗z3 4 − z
1 − 4z + 6z2

c∗ ≈ −1.144208 − 0.964454i

22 / 32



Proof of realization

X.G. Wang ’12 :
∃ a rational map f1 in H admitting a Herman ring H1 with inner and outer critical points
combinatorially positioned at a1, . . . , ad0−1 and b1, . . . , bd∞−1.

By QC deformation,
∃ 1-par family {ft}0<t≤1 ⊂ H where ft has a Herman ring Ht with the same
combinatorics and mod(Ht) → 0 as t → 0.

By a priori bounds,
∂Ht are K -quasicircles for all t;
{ft}0<t≤1 is pre-compact in Ratd0+d∞−1.

Result: f0 = lim
t→0

ft exists and has a Herman curve with the same combinatorics as f1.
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Description of ∂H

Theorem (Rigidity)
If two rational maps f , g in ∂H are combinatorially equivalent, then

f = L ◦ g ◦ L−1

for some linear map L(z) = λz.

An invariant line field is a measurable collection of 1-D subspaces {Lx ⊂ Tx Ĉ}x∈E where
the support E is a positive-measure totally invariant subset of Ĉ,
for a.e. x ∈ E , dfx(Lx) = Lf (x).

In the proof of rigidity, we show that every f ∈ H admits no invariant line field.

Corollary
∂H/∼ is homeomorphic to

SPd0−1(S1)× SPd∞−1(S1)/rigid rotation

which is a compact connected topological orbifold of dimension d0 + d∞ − 3.
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What’s next?

Recall the unicritical example:

θ = golden mean
2 inner critical pts
1 outer critical pt

Fc∗ (z) = c∗z3 4 − z
1 − 4z + 6z2

c∗ ≈ −1.144208 − 0.964454i

The 1-par family of degree 4 rational maps

Fc(z) = cz3 4 − z
1 − 4z + 6z2

is characterized by the data on the right. •
0

•
1

•
c

•
∞

3 : 1
4 : 1

2 : 1

In general, for any bounded type θ, ∃! parameter cθ such that Fcθ has a Herman curve
with rotation number θ.
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Parameter space picture

Bifurcation locus of {Fc} magnified around the parameter c? = cθ where θ=golden mean.

Conjecture: The bifurcation locus of {Fc} is self-similar at c?.
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Thank you!
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