Degeneration of Herman rings

Willie Rush Lim

Stony Brook University

Geometry \& Topology Seminar
Brown University
January 24, 2024

QC maps and Quasicircles

A K-quasiconformal (qc) map $f: X \rightarrow X$ is an orientation-preserving homeomorphism of a Riemann surface X sending a (measurable) field of circles to a field of ellipses of eccentricity bounded by $K \geq 1$.

QC maps and Quasicircles

A K-quasiconformal (qc) map $f: X \rightarrow X$ is an orientation-preserving homeomorphism of a Riemann surface X sending a (measurable) field of circles to a field of ellipses of eccentricity bounded by $K \geq 1$.

A K-quasidisk is the image of the unit disk $\mathbb{D} \subset \widehat{\mathbb{C}}$ under a K-qc map on $\widehat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$. Its boundary is called a K-quasicircle.

QC maps and Quasicircles

A K-quasiconformal (qc) map $f: X \rightarrow X$ is an orientation-preserving homeomorphism of a Riemann surface X sending a (measurable) field of circles to a field of ellipses of eccentricity bounded by $K \geq 1$.

A K-quasidisk is the image of the unit disk $\mathbb{D} \subset \widehat{\mathbb{C}}$ under a K-qc map on $\widehat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$. Its boundary is called a K-quasicircle.

- Moduli spaces of Riemann surfaces can be described in terms of qc maps.
- The universal Teichmüller space can be described as the space of quasicircles.
- Quasicircles appear naturally in the study of Kleinian groups and rational maps.

Rotation domains

A maximal invariant domain U of a holomorphic map f is called a rotation domain if $\left.f\right|_{U}$ is conjugate to irrational rotation $R_{\theta}(z)=e^{2 \pi i \theta} z$.

There are only 2 types:
(1) U is simply connected, i.e. a Siegel disk;
(2) U is an annulus, i.e. a Herman ring.

Rotation domains

A maximal invariant domain U of a holomorphic map f is called a rotation domain if $\left.f\right|_{U}$ is conjugate to irrational rotation $R_{\theta}(z)=e^{2 \pi i \theta} z$.

There are only 2 types:
(1) U is simply connected, i.e. a Siegel disk;
(2) U is an annulus, i.e. a Herman ring.

$f(z)=z^{2}+c$ where $c \approx-0.3905-0.5868 i$
Conjecture:
The boundary components of rotation domains of rational maps are Jordan curves.

Deforming invariant annuli

Unlike Siegel disks, Herman rings come with a natural "Teichmüller space".

Two ways of deforming a Herman ring U :
(1) Radial stretch, i.e. increase/decrease $\bmod (U)$,
(2) Twist ∂U

Cutting U along a radial line gives us a rectangle (where the horizontal sides are to be identified). The two moves above correspond to:
(1) Vertical stretch,
(2) Horizontal shear.

Deforming invariant annuli

Unlike Siegel disks, Herman rings come with a natural "Teichmüller space".

Two ways of deforming a Herman ring U :
(1) Radial stretch, i.e. increase/decrease $\bmod (U)$,
(2) Twist ∂U

Cutting U along a radial line gives us a rectangle (where the horizontal sides are to be identified). The two moves above correspond to:
(1) Vertical stretch,
(2) Horizontal shear.

Naturally, the "moduli space" of (f, U) is isomorphic to $\mathbb{R}_{>0} \times S^{1}$.

Question: What happens at the boundary of the "moduli space"?

- When $\bmod (U) \rightarrow \infty$, this is easy;
- When $\bmod (U) \rightarrow 0, \ldots$?

Bounded type assumption

Fix an irrational $\theta \in(0,1)$. Assume it is of bounded type, i.e. there is $B \in \mathbb{N}$ such that

$$
\sup _{n \geq 1} a_{n} \leq B \quad \text { where } \quad \theta=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\ldots}}} .
$$

E.g. golden mean $\frac{\sqrt{5}-1}{2}=\frac{1}{1+\frac{1}{1+\frac{1}{1+\ldots}}}$

Bounded type assumption

Fix an irrational $\theta \in(0,1)$. Assume it is of bounded type, i.e. there is $B \in \mathbb{N}$ such that

$$
\sup _{n \geq 1} a_{n} \leq B \quad \text { where } \quad \theta=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\ldots}}}
$$

E.g. golden mean $\frac{\sqrt{5}-1}{2}=\frac{1}{1+\frac{1}{1+\frac{1}{1+\ldots}}}$

Theorem (G.F. Zhang '11)

If U is a rotation domain of a rational map $f: \widehat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ with rotation number θ, every component of ∂U is a quasicircle containing a critical point.

Herman rings of the simplest configuration

Fix $d_{0}, d_{\infty} \geq 2$. Consider the family \mathcal{H} of degree $d_{0}+d_{\infty}-1$ rational maps f where

- 0 and ∞ are critical fixed points with local degree d_{0} and d_{∞},
- f has a Herman ring \mathbb{H}_{f} of rotation number θ,
- all other critical points are on $\partial \mathbb{H}_{f}$.

Theorem (A Priori Bounds)

For all $f \in \mathcal{H}$, the boundary of \mathbb{H}_{f} consists of K-quasicircles, where K depends only on $\operatorname{deg}(f)$ and B and not on $\bmod \left(\mathbb{H}_{f}\right)$.

How to prove a priori bounds?

Let H be a boundary component of the Herman ring of $f \in \mathcal{H}$. Equip H with the unique normalized f-invariant metric.

How to prove a priori bounds?

Let H be a boundary component of the Herman ring of $f \in \mathcal{H}$. Equip H with the unique normalized f-invariant metric.
$I=$ an interval in H of (combinatorial) length $|I|<0.1$. $10 I=$ the interval of length $10|I|$ having the same midpoint as I. $W_{10}(I)=$ the extremal width of curves connecting I and $H \backslash 10 I$.

How to prove a priori bounds?

Let H be a boundary component of the Herman ring of $f \in \mathcal{H}$.
Equip H with the unique normalized f-invariant metric.
$I=$ an interval in H of (combinatorial) length $|I|<0.1$.
$10 I=$ the interval of length $10|I|$ having the same midpoint as I.
$W_{10}(I)=$ the extremal width of curves connecting I and $H \backslash 10 I$.

small $W_{10}(I)$

large $W_{10}(I)$
$W_{10}(I)$ encodes the local (near-)degeneration of H near the interval I.

Near-Degenerate Regime

To prove a priori bounds, it is sufficient to find constants ε and \mathbf{K} depending only on B, d_{0}, d_{∞} such that:
every interval $I \subset H$ of length $|I|<\varepsilon$ satisfies $W_{10}(I)<\mathbf{K}$.

Near-Degenerate Regime

To prove a priori bounds, it is sufficient to find constants ε and \mathbf{K} depending only on B, d_{0}, d_{∞} such that:

$$
\text { every interval } I \subset H \text { of length }|I|<\varepsilon \text { satisfies } W_{10}(I)<\mathbf{K} \text {. }
$$

Our goal is reduced to showing:

Theorem (Amplification)

there is an interval $I \subset H$ with length $|I| \ll 1$ and width $W_{10}(I)=\mathrm{K} \gg 1$, then
there is another interval $J \subset H$ with length $|J| \ll 1$ and width $W_{10}(J) \geq 2 \mathrm{~K}$.
(All bounds depend only on d_{0}, d_{∞}, B.)

Near-Degenerate Regime

To prove a priori bounds, it is sufficient to find constants ε and \mathbf{K} depending only on B, d_{0}, d_{∞} such that:

$$
\text { every interval } I \subset H \text { of length }|I|<\varepsilon \text { satisfies } W_{10}(I)<\mathbf{K} \text {. }
$$

Our goal is reduced to showing:
Theorem (Amplification)
If
there is an interval $I \subset H$ with length $|I| \ll 1$ and width $W_{10}(I)=\mathrm{K} \gg 1$, then
there is another interval $J \subset H$ with length $|J| \ll 1$ and width $W_{10}(J) \geq 2 \mathrm{~K}$.
(All bounds depend only on d_{0}, d_{∞}, B.)

The proof relies on the near-degenerate machinery, including ideas from: Kahn-Lyubich '05, Kahn '06, and Dudko-Lyubich '22.

Rotation curves

An invariant curve $X \subset \widehat{\mathbb{C}}$ of a holomorphic map f is a rotation curve if $\left.f\right|_{X}$ is conjugate to irrational rotation.

If X is not contained in the closure of a rotation domain, we call it a Herman curve.

Rotation curves

An invariant curve $X \subset \widehat{\mathbb{C}}$ of a holomorphic map f is a rotation curve if $\left.f\right|_{X}$ is conjugate to irrational rotation.

If X is not contained in the closure of a rotation domain, we call it a Herman curve.

Trivial example: For any irrational θ, there is a unique $\zeta_{\theta} \in \mathbb{T}$ such that the unit circle is a Herman curve of rotation number θ for the rational map

$$
f_{\theta}(z)=\zeta_{\theta} z^{2} \frac{z-3}{1-3 z}
$$

Rotation curves

An invariant curve $X \subset \widehat{\mathbb{C}}$ of a holomorphic map f is a rotation curve if $\left.f\right|_{X}$ is conjugate to irrational rotation.

If X is not contained in the closure of a rotation domain, we call it a Herman curve.

Trivial example: For any irrational θ, there is a unique $\zeta_{\theta} \in \mathbb{T}$ such that the unit circle is a Herman curve of rotation number θ for the rational map

$$
f_{\theta}(z)=\zeta_{\theta} z^{2} \frac{z-3}{1-3 z}
$$

Question: Can non-trivial Herman curves exist?

Non-trivial Herman curves

Theorem (Realization)

Given any points

$$
a_{1}, \ldots, a_{d_{0}-1}, b_{1}, \ldots, b_{d_{\infty}-1} \in S^{1}
$$

there exists a rational map f in $\partial \mathcal{H}$ admitting a Herman curve \mathbf{H} such that $\operatorname{rot}\left(\left.f\right|_{\boldsymbol{H}}\right)=\theta$ and in linearizing coordinates, the inner critical points of $\left.f\right|_{\mathbf{H}}$ are $a_{1}, \ldots, a_{d_{0}-1}$, and the outer critical points are $b_{1}, \ldots, b_{d_{\infty}-1}$.

Non-trivial Herman curves

Theorem (Realization)

Given any points

$$
a_{1}, \ldots, a_{d_{0}-1}, b_{1}, \ldots, b_{d_{\infty}-1} \in S^{1}
$$

there exists a rational map f in $\partial \mathcal{H}$ admitting a Herman curve \mathbf{H} such that $\operatorname{rot}\left(\left.f\right|_{\boldsymbol{H}}\right)=\theta$ and in linearizing coordinates, the inner critical points of $\left.f\right|_{\mathrm{H}}$ are $a_{1}, \ldots, a_{d_{0}-1}$, and the outer critical points are $b_{1}, \ldots, b_{d_{\infty}-1}$.

Unicritical example:

$\theta=$ golden mean
2 inner critical pts
1 outer critical pt

$$
\begin{aligned}
F_{c_{*}}(z) & =c_{*} z^{3} \frac{4-z}{1-4 z+6 z^{2}} \\
c_{*} & \approx-1.144208-0.964454 i
\end{aligned}
$$

Proof of realization

```
X.G. Wang '12 :
\exists \text { a rational map } f _ { 1 } \text { in } \mathcal { H } \text { admitting a Herman ring } \mathbb { H } _ { 1 } \text { with inner and outer critical points}
combinatorially positioned at }\mp@subsup{a}{1}{},\ldots,\mp@subsup{a}{\mp@subsup{d}{0}{}-1}{}\mathrm{ and }\mp@subsup{b}{1}{},\ldots,\mp@subsup{b}{\mp@subsup{d}{\infty}{}-1}{}\mathrm{ .
```


Proof of realization

```
X.G. Wang '12 :
\exists \text { a rational map } f _ { 1 } \text { in } \mathcal { H } \text { admitting a Herman ring } \mathbb { H } _ { 1 } \text { with inner and outer critical points}
combinatorially positioned at }\mp@subsup{a}{1}{},\ldots,\mp@subsup{a}{\mp@subsup{d}{0}{}-1}{}\mathrm{ and }\mp@subsup{b}{1}{},\ldots,\mp@subsup{b}{\mp@subsup{d}{\infty}{}-1}{
```

By QC deformation,
\exists 1-par family $\left\{f_{t}\right\}_{0<t \leq 1} \subset \mathcal{H}$ where f_{t} has a Herman ring \mathbb{H}_{t} with the same combinatorics and $\bmod \left(\mathbb{H}_{t}\right) \rightarrow 0$ as $t \rightarrow 0$.

Proof of realization

```
X.G. Wang '12 :
\exists a rational map f}\mp@subsup{f}{1}{}\mathrm{ in }\mathcal{H}\mathrm{ admitting a Herman ring }\mp@subsup{\mathbb{H}}{1}{}\mathrm{ with inner and outer critical points
combinatorially positioned at }\mp@subsup{a}{1}{},\ldots,\mp@subsup{a}{\mp@subsup{d}{0}{}-1}{}\mathrm{ and }\mp@subsup{b}{1}{},\ldots,\mp@subsup{b}{\mp@subsup{d}{\infty}{}-1}{
```

By QC deformation,
\exists 1-par family $\left\{f_{t}\right\}_{0<t \leq 1} \subset \mathcal{H}$ where f_{t} has a Herman ring \mathbb{H}_{t} with the same combinatorics and $\bmod \left(\mathbb{H}_{t}\right) \rightarrow 0$ as $t \rightarrow 0$.

By a priori bounds,

- $\partial \mathbb{H}_{t}$ are K-quasicircles for all t;
- $\left\{f_{t}\right\}_{0<t \leq 1}$ is pre-compact in $\operatorname{Rat}_{d_{0}+d_{\infty}-1}$.

Proof of realization

X.G. Wang '12 :
\exists a rational map f_{1} in \mathcal{H} admitting a Herman ring \mathbb{H}_{1} with inner and outer critical points combinatorially positioned at $a_{1}, \ldots, a_{d_{0}-1}$ and $b_{1}, \ldots, b_{d_{\infty}-1}$.

By QC deformation,
\exists 1-par family $\left\{f_{t}\right\}_{0<t \leq 1} \subset \mathcal{H}$ where f_{t} has a Herman ring \mathbb{H}_{t} with the same combinatorics and $\bmod \left(\mathbb{H}_{t}\right) \rightarrow 0$ as $t \rightarrow 0$.

By a priori bounds,

- $\partial \mathbb{H}_{t}$ are K-quasicircles for all t;
- $\left\{f_{t}\right\}_{0<t \leq 1}$ is pre-compact in Rat d $_{d_{0}+d_{\infty}-1}$.

Result: $f_{0}=\lim _{t \rightarrow 0} f_{t}$ exists and has a Herman curve with the same combinatorics as f_{1}.

Description of $\partial \mathcal{H}$

Theorem (Rigidity)

If two rational maps f, g in $\partial \mathcal{H}$ are combinatorially equivalent, then

$$
f=L \circ g \circ L^{-1}
$$

for some linear map $L(z)=\lambda z$.

Description of $\partial \mathcal{H}$

Theorem (Rigidity)

If two rational maps f, g in $\partial \mathcal{H}$ are combinatorially equivalent, then

$$
f=L \circ g \circ L^{-1}
$$

for some linear map $L(z)=\lambda z$.
An invariant line field is a measurable collection of 1-D subspaces $\left\{L_{x} \subset T_{x} \hat{\mathbb{C}}\right\}_{x \in E}$ where

- the support E is a positive-measure totally invariant subset of $\widehat{\mathbb{C}}$,
- for a.e. $x \in E, d f_{x}\left(L_{x}\right)=L_{f(x)}$.

In the proof of rigidity, we show that every $f \in \mathcal{H}$ admits no invariant line field.

Description of $\partial \mathcal{H}$

Theorem (Rigidity)

If two rational maps f, g in $\partial \mathcal{H}$ are combinatorially equivalent, then

$$
f=L \circ g \circ L^{-1}
$$

for some linear map $L(z)=\lambda z$.
An invariant line field is a measurable collection of 1-D subspaces $\left\{L_{x} \subset T_{x} \hat{\mathbb{C}}\right\}_{x \in E}$ where

- the support E is a positive-measure totally invariant subset of $\widehat{\mathbb{C}}$,
- for a.e. $x \in E, d f_{x}\left(L_{x}\right)=L_{f(x)}$.

In the proof of rigidity, we show that every $f \in \mathcal{H}$ admits no invariant line field.

Corollary

$\partial \mathcal{H} / \sim$ is homeomorphic to

$$
\mathrm{SP}^{d_{0}-1}\left(S^{1}\right) \times \mathrm{SP}^{d_{\infty}-1}\left(S^{1}\right) / \text { rigid rotation }
$$

which is a compact connected topological orbifold of dimension $d_{0}+d_{\infty}-3$.

What's next?

Recall the unicritical example:

$\theta=$ golden mean
2 inner critical pts 1 outer critical pt

$$
\begin{aligned}
F_{c_{*}}(z) & =c_{*} z^{3} \frac{4-z}{1-4 z+6 z^{2}} \\
c_{*} & \approx-1.144208-0.964454 i
\end{aligned}
$$

The 1-par family of degree 4 rational maps

$$
F_{c}(z)=c z^{3} \frac{4-z}{1-4 z+6 z^{2}}
$$

is characterized by the data on the right.

In general, for any bounded type θ, \exists ! parameter c_{θ} such that $F_{c_{\theta}}$ has a Herman curve with rotation number θ.

Parameter space picture

Bifurcation locus of $\left\{F_{c}\right\}$ magnified around the parameter $c_{\star}=c_{\theta}$ where $\theta=$ golden mean.

Conjecture: The bifurcation locus of $\left\{F_{c}\right\}$ is self-similar at c_{\star}.

Thank you!

