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QC maps and Quasicircles

A K-quasiconformal (QC) map f : X → X is an orientation-preserving homeomorphism
of a Riemann surface X sending a (measurable) field of circles to a field of ellipses of
eccentricity bounded by K ≥ 1.

A K-quasidisk is the image of the unit disk D under a K-QC map on P1 = C ∪ {∞}.
Its boundary is called a K-quasicircle.

- Moduli spaces of Riemann surfaces can be described in terms of QC maps.
- The universal Teichmüller space can be described as the space of quasicircles.
- Quasicircles appear naturally in the study of Kleinian groups and rational maps.
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Diophantine assumption

Fix an irrational θ ∈ (0, 1) and write

θ = [a1, a2, a3, . . .] :=
1

a1 +
1

a2+
1

a3+...

.

θ is called
bounded type if sup an ≤ B for some B ∈ N.
periodic type if an+p = an for all n.

E.g. golden mean = [1, 1, 1, . . .]

Consider the rigid rotation

Rθ : S1 → S1, z 7→ e2πiθz.

Let pn/qn = [a1, . . . , an] be the nth best rational approximation of θ.
The closest returns of the orbit {ci := Ri

θ(c)}i≥0 back to any point c ∈ S1 is:

c0cq1 cq2cq3 cq4cq5 cq6
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Critical quasicircle maps

(uni-)critical quasicircle map =

{
analytic self homeomorphism f of a quasicircle H
with a unique critical point c on H

Theorem (Petersen ’04)
When rot(f |H) = θ is irrational,

1 f |H has no wandering intervals and is conjugate to rigid rotation Rθ : S1 → S1;
2 θ is of bounded type iff the conjugacy H → S1 extends to a QC map P1 → P1.
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Inner & outer criticalities

Let d0 = inner criticality of the critical point
and d∞ = outer criticality.
The total local degree of the critical point is d0 + d∞ − 1.

Example of
(d0, d∞) = (2, 3)

H

f

When d0 = d∞, examples can be found amongst critical circle maps.
E.g. when (d0, d∞) = (2, 2), we have the Arnold family:

f(x) = x+ t− 1

2π
sin(2πx), x ∈ R/Z.
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Realization of arbitrary criticalities

Fix a bounded type θ and a pair of integers d0 ≥ 2 and d∞ ≥ 2.

Theorem
There exists a unique degree d0 + d∞ − 1 rational map F such that

1 F has critical fixed points at 0 and ∞ with local degrees d0 and d∞,
2 F has a critical point 1 with local degree d0 + d∞ − 1,
3 F has an invariant curve H passing through 1 and separates 0 and ∞;
4 F : H → H is a critical quasicircle map with rotation number θ.

θ = golden mean

(d0, d∞) = (3, 2)

Fc∗ (z) = c∗z
3 4 − z

1 − 4z + 6z2

c∗ ≈ −1.14421 − 0.96445i
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Idea behind the proof

Consider a 1-par family of degree d0 + d∞ − 1 rational maps {Fm}m>0 where
1 Fm has critical fixed points at 0 and ∞ with local degrees d0 and d∞,
2 Fm has a Herman ring Hm (rotation annulus) with rotation no. θ and modulus m;
3 Hm separates 0 and ∞;
4 the inner (resp. outer) boundary of Hm contains a critical point of local degree d0

(resp. d∞).

Theorem (A priori bounds)
∂Hm are K-quasicircles, where K is independent of the conformal modulus m.

m is large m is small m = 0

Hm F−1
m (Hm)

H
F−1(H)

As m → 0, F = lim
m→0

Fm exists and has the desired invariant quasicircle H = lim
t→0

Hm.
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C1+α Rigidity

Theorem
Given two critical quasicircle maps f1 : H1 → H1 and f2 : H2 → H2 of the same
criticalities (d0, d∞) and bounded type rotation number θ, there is a uniformly C1+α

conjugacy φ : H1 → H2 between f1 and f2.

Corollary
Given a critical quasicircle map f : H → H,

1 dim(H) is universal (depending only on (d0, d∞) and θ);
2 H is C1 smooth iff dim(H) = 1 iff d0 = d∞;
3 if θ is of periodic type, H is self-similar at the critical point with universal scaling.
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Renormalization

Fix f : H → H and let {ci := f i(c)}i≥0 be the orbit of the critical point c of f .

The pre-renormalization pRnf is the pair(
fqn |[cqn−1

,c0], f
qn−1 |[c0,cqn ]

)
which is the first return map of f back to the interval
[cqn−1 , cqn ] ⊂ H.

The renormalization Rnf is the normalized pair
obtained by affine rescaling cqn−1 7→ −1 and c0 7→ 0.

fqnfqn−1

c0 cqncqn−1

cqn+qn−1
cqncqn−1

R acts on rotation number as the Gauss map:

rot(f) = θ = [a1, a2, . . .] =⇒ rot(Rnf) = Gnθ = [an+1, an+2, . . .].
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Renormalization fixed point

Fix θ∗ = [N,N,N, . . .].

Corollary
There is a unique normalized pair ζ∗ with

rot(ζ∗) = θ∗ and Rζ∗ = ζ∗.

Given any critical quasicircle map f : H → H with rot(f) = [???, N,N,N, . . .],
Rnf −→ ζ∗ exp. fast.

One can also glue the two ends of ζ∗ to obtain a critical quasicircle map f∗ : H∗ → H∗.

fqn
∗

f
qn−1
∗

f∗

H

Rf∗ = f∗

=⇒
conformally

glue the
vertical
sides
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Hyperbolicity

Theorem
Consider a Banach neighborhood B of unicritical analytic maps on a neighborhood of H∗
close to f∗ in sup norm.

1 R is a compact analytic operator on B with a unique fixed point f∗ which is
hyperbolic.

2 Ws
loc(f∗) = {g ∈ B : g is a critical quasicircle map with rotation number θ∗}.

3 dim(Wu
loc) = 1.

Corollary
Within the space of unicritical holomorphic maps on an annulus, the set of critical
quasicircle maps with rotation number θ∗ is an analytic submanifold of codimension ≤ 1.
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Thank you!
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