Critical quasicircle maps

Willie Rush Lim

Stony Brook University

April 4, 2024

QC maps and Quasicircles

A *K*-quasiconformal (QC) map $f: X \to X$ is an orientation-preserving homeomorphism of a Riemann surface *X* sending a (measurable) field of circles to a field of ellipses of eccentricity bounded by $K \ge 1$.

QC maps and Quasicircles

A *K*-quasiconformal (QC) map $f: X \to X$ is an orientation-preserving homeomorphism of a Riemann surface *X* sending a (measurable) field of circles to a field of ellipses of eccentricity bounded by $K \ge 1$.

A *K*-quasidisk is the image of the unit disk \mathbb{D} under a *K*-QC map on $\mathbb{P}^1 = \mathbb{C} \cup \{\infty\}$. Its boundary is called a *K*-quasicircle.

QC maps and Quasicircles

A *K*-quasiconformal (QC) map $f: X \to X$ is an orientation-preserving homeomorphism of a Riemann surface *X* sending a (measurable) field of circles to a field of ellipses of eccentricity bounded by $K \ge 1$.

A *K*-quasidisk is the image of the unit disk \mathbb{D} under a *K*-QC map on $\mathbb{P}^1 = \mathbb{C} \cup \{\infty\}$. Its boundary is called a *K*-quasicircle.

- Moduli spaces of Riemann surfaces can be described in terms of QC maps.

- The universal Teichmüller space can be described as the space of quasicircles.
- Quasicircles appear naturally in the study of Kleinian groups and rational maps.

Diophantine assumption

Fix an irrational $\theta \in (0,1)$ and write

$$\theta = [a_1, a_2, a_3, \ldots] := \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \ldots}}}.$$

 $\boldsymbol{\theta}$ is called

- bounded type if $\sup a_n \leq B$ for some $B \in \mathbb{N}$.
- periodic type if $a_{n+p} = a_n$ for all n.

E.g. golden mean $= [1, 1, 1, \ldots]$

Diophantine assumption

Fix an irrational $\theta \in (0,1)$ and write

$$\theta = [a_1, a_2, a_3, \ldots] := \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \ldots}}}.$$

 $\boldsymbol{\theta}$ is called

- bounded type if $\sup a_n \leq B$ for some $B \in \mathbb{N}$.
- periodic type if $a_{n+p} = a_n$ for all n.
- E.g. golden mean = $[1, 1, 1, \ldots]$

Consider the rigid rotation

$$R_{\theta}: S^1 \to S^1, \quad z \mapsto e^{2\pi i \theta} z.$$

Let $p_n/q_n = [a_1, \ldots, a_n]$ be the n^{th} best rational approximation of θ . The closest returns of the orbit $\{c_i := R^i_{\theta}(c)\}_{i \ge 0}$ back to any point $c \in S^1$ is:

(uni-)critical quasicircle map =
$$\begin{cases} \text{analytic self homeomorphism } f \text{ of a quasicircle } \mathbf{H} \\ \text{with a unique critical point } c \text{ on } \mathbf{H} \end{cases}$$

Theorem (Petersen '04)

When $rot(f|_{\mathbf{H}}) = \theta$ is irrational,

- $f|_{\mathbf{H}}$ has no wandering intervals and is conjugate to rigid rotation $R_{\theta}: S^1 \to S^1$;
- **2** θ is of bounded type iff the conjugacy $\mathbf{H} \to S^1$ extends to a QC map $\mathbb{P}^1 \to \mathbb{P}^1$.

Inner & outer criticalities

Let $d_0 =$ inner criticality of the critical point and $d_{\infty} =$ outer criticality.

The total local degree of the critical point is $d_0 + d_{\infty} - 1$.

Inner & outer criticalities

Let $d_0 =$ inner criticality of the critical point and $d_{\infty} =$ outer criticality.

The total local degree of the critical point is $d_0 + d_{\infty} - 1$.

When $d_0 = d_{\infty}$, examples can be found amongst critical circle maps. E.g. when $(d_0, d_{\infty}) = (2, 2)$, we have the Arnold family:

$$f(x) = x + t - \frac{1}{2\pi}\sin(2\pi x), \quad x \in \mathbb{R}/\mathbb{Z}.$$

Realization of arbitrary criticalities

Fix a bounded type θ and a pair of integers $d_0 \geq 2$ and $d_{\infty} \geq 2$.

Theorem

There exists a unique degree $d_0 + d_\infty - 1$ rational map F such that

- **(**) F has critical fixed points at 0 and ∞ with local degrees d_0 and d_{∞} ,
- **2** F has a critical point 1 with local degree $d_0 + d_{\infty} 1$,
- **③** F has an invariant curve **H** passing through 1 and separates 0 and ∞ ;
- **9** $F : \mathbf{H} \to \mathbf{H}$ is a critical quasicircle map with rotation number θ .

Realization of arbitrary criticalities

Fix a bounded type θ and a pair of integers $d_0 \ge 2$ and $d_{\infty} \ge 2$.

Theorem

There exists a unique degree $d_0 + d_\infty - 1$ rational map F such that

- **(**) F has critical fixed points at 0 and ∞ with local degrees d_0 and d_∞ ,
- 2 F has a critical point 1 with local degree $d_0 + d_{\infty} 1$,
- **③** F has an invariant curve **H** passing through 1 and separates 0 and ∞ ;
- **9** $F : \mathbf{H} \to \mathbf{H}$ is a critical quasicircle map with rotation number θ .

Idea behind the proof

Consider a 1-par family of degree $d_0 + d_\infty - 1$ rational maps $\{F_m\}_{m>0}$ where

- **()** F_m has critical fixed points at 0 and ∞ with local degrees d_0 and d_∞ ,
- **(a)** F_m has a Herman ring \mathbb{H}_m (rotation annulus) with rotation no. θ and modulus m;
- **3** \mathbb{H}_m separates 0 and ∞ ;
- the inner (resp. outer) boundary of 𝔄_m contains a critical point of local degree d₀ (resp. d_∞).

Idea behind the proof

Consider a 1-par family of degree $d_0 + d_\infty - 1$ rational maps $\{F_m\}_{m>0}$ where

- **()** F_m has critical fixed points at 0 and ∞ with local degrees d_0 and d_∞ ,
- **(a)** F_m has a Herman ring \mathbb{H}_m (rotation annulus) with rotation no. θ and modulus m;
- **3** \mathbb{H}_m separates 0 and ∞ ;
- the inner (resp. outer) boundary of H_m contains a critical point of local degree d₀ (resp. d_∞).

Theorem (A priori bounds)

 $\partial \mathbb{H}_m$ are K-quasicircles, where K is independent of the conformal modulus m.

As $m \to 0$, $F = \lim_{m \to 0} F_m$ exists and has the desired invariant quasicircle $\mathbf{H} = \lim_{t \to 0} \overline{\mathbb{H}_m}$.

Theorem

Given two critical quasicircle maps $f_1 : \mathbf{H}_1 \to \mathbf{H}_1$ and $f_2 : \mathbf{H}_2 \to \mathbf{H}_2$ of the same criticalities (d_0, d_∞) and bounded type rotation number θ , there is a uniformly $C^{1+\alpha}$ conjugacy $\phi : \mathbf{H}_1 \to \mathbf{H}_2$ between f_1 and f_2 .

Corollary

Given a critical quasicircle map $f: \mathbf{H} \to \mathbf{H}$,

- dim(H) is universal (depending only on (d_0, d_∞) and θ);
- **2 H** is C^1 smooth iff dim(**H**) = 1 iff $d_0 = d_\infty$;
- **(9)** if θ is of periodic type, **H** is self-similar at the critical point with universal scaling.

Renormalization

Fix $f : \mathbf{H} \to \mathbf{H}$ and let $\{c_i := f^i(c)\}_{i \ge 0}$ be the orbit of the critical point c of f.

The pre-renormalization $p\mathcal{R}^n f$ is the pair

$$\left(f^{q_n}|_{[c_{q_{n-1}},c_0]}, f^{q_{n-1}}|_{[c_0,c_{q_n}]}\right)$$

which is the first return map of f back to the interval $[c_{q_{n-1}},c_{q_n}]\subset \mathbf{H}.$

The renormalization $\mathcal{R}^n f$ is the normalized pair obtained by affine rescaling $c_{q_{n-1}}\mapsto -1$ and $c_0\mapsto 0.$

Renormalization

Fix $f : \mathbf{H} \to \mathbf{H}$ and let $\{c_i := f^i(c)\}_{i \ge 0}$ be the orbit of the critical point c of f.

The pre-renormalization $p\mathcal{R}^n f$ is the pair

$$\left(f^{q_n}|_{[c_{q_{n-1}},c_0]}, f^{q_{n-1}}|_{[c_0,c_{q_n}]}\right)$$

which is the first return map of f back to the interval $[c_{q_{n-1}}, c_{q_n}] \subset \mathbf{H}.$

The renormalization $\mathcal{R}^n f$ is the normalized pair obtained by affine rescaling $c_{q_{n-1}} \mapsto -1$ and $c_0 \mapsto 0$.

 $\mathcal R$ acts on rotation number as the Gauss map:

$$\mathsf{rot}(f) = \theta = [a_1, a_2, \ldots] \implies \mathsf{rot}(\mathcal{R}^n f) = G^n \theta = [a_{n+1}, a_{n+2}, \ldots].$$

Renormalization fixed point

Fix $\theta_* = [N, N, N, \ldots].$

Corollary

There is a unique normalized pair ζ_* with

$$\operatorname{rot}(\zeta_*) = \theta_*$$
 and $\mathcal{R}\zeta_* = \zeta_*$.

Given any critical quasicircle map $f : \mathbf{H} \to \mathbf{H}$ with rot(f) = [???, N, N, N, ...],

 $\mathcal{R}^n f \longrightarrow \zeta_*$ exp. fast.

Renormalization fixed point

Fix $\theta_* = [N, N, N, \ldots].$

Corollary

There is a unique normalized pair ζ_* with

$$rot(\zeta_*) = \theta_*$$
 and $\mathcal{R}\zeta_* = \zeta_*$.

Given any critical quasicircle map $f : \mathbf{H} \to \mathbf{H}$ with rot(f) = [???, N, N, N, ...],

$$\mathcal{R}^n f \longrightarrow \zeta_*$$
 exp. fast.

One can also glue the two ends of ζ_* to obtain a critical quasicircle map $f_*: \mathbf{H}_* \to \mathbf{H}_*$.

Theorem

Consider a Banach neighborhood \mathcal{B} of unicritical analytic maps on a neighborhood of \mathbf{H}_* close to f_* in sup norm.

- R is a compact analytic operator on B with a unique fixed point f* which is hyperbolic.
- **2** $\mathcal{W}^s_{loc}(f_*) = \{g \in \mathcal{B} : g \text{ is a critical quasicircle map with rotation number } \theta_*\}.$
- $im(\mathcal{W}^u_{loc}) = 1.$

Theorem

Consider a Banach neighborhood \mathcal{B} of unicritical analytic maps on a neighborhood of \mathbf{H}_* close to f_* in sup norm.

- R is a compact analytic operator on B with a unique fixed point f* which is hyperbolic.
- **2** $\mathcal{W}_{loc}^{s}(f_{*}) = \{g \in \mathcal{B} : g \text{ is a critical quasicircle map with rotation number } \theta_{*}\}.$
- $Im(\mathcal{W}^u_{loc}) = 1.$

Corollary

Within the space of unicritical holomorphic maps on an annulus, the set of critical quasicircle maps with rotation number θ_* is an analytic submanifold of codimension ≤ 1 .

Thank you!