Rigidity for Rotational Dynamics

Willie Rush Lim

Stony Brook University

AMS Sectional Meeting April 2024

Given a degree $d \geq 2$ rational map $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$, an invariant line field of f is a measurable Beltrami differential $\mu = \mu(z) \frac{d\bar{z}}{dz}$ on $\hat{\mathbb{C}}$ where

- $f^*\mu = \mu$ a.e.,
- $supp(\mu) = positive area subset of J(f),$
- $|\mu(z)| = 1$ on $supp(\mu)$.

Given a degree $d \geq 2$ rational map $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$, an invariant line field of f is a measurable Beltrami differential $\mu = \mu(z) \frac{d\tilde{z}}{dz}$ on $\hat{\mathbb{C}}$ where

- $f^*\mu = \mu$ a.e.,
- $supp(\mu) = positive area subset of J(f),$
- $|\mu(z)| = 1$ on $supp(\mu)$.

Conjecture (NILF)

If f is not a Lattés example, the Julia set J(f) supports no invariant line field of f.

Given a degree $d \geq 2$ rational map $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$, an invariant line field of f is a measurable Beltrami differential $\mu = \mu(z) \frac{d\tilde{z}}{dz}$ on $\hat{\mathbb{C}}$ where

- $f^*\mu = \mu$ a.e.,
- $supp(\mu) = positive area subset of J(f),$
- $|\mu(z)| = 1$ on $supp(\mu)$.

Conjecture (NILF)

If f is not a Lattés example, the Julia set J(f) supports no invariant line field of f.

Having NILF is a rigidity property: if ϕ is a QC conjugacy between two rational maps f,g,

$$f$$
 has NILF \Longrightarrow $\bar{\partial}\phi=0$ a.e. on $J(f)$.

Given a degree $d \geq 2$ rational map $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$, an invariant line field of f is a measurable Beltrami differential $\mu = \mu(z) \frac{d\bar{z}}{dz}$ on $\hat{\mathbb{C}}$ where

- $f^*\mu = \mu$ a.e.,
- $supp(\mu) = positive area subset of J(f),$
- $|\mu(z)| = 1$ on $supp(\mu)$.

Conjecture (NILF)

If f is not a Lattés example, the Julia set J(f) supports no invariant line field of f.

Having NILF is a rigidity property: if ϕ is a QC conjugacy between two rational maps f,g,

$$f$$
 has NILF $\implies \bar{\partial}\phi = 0$ a.e. on $J(f)$.

Also, the conjecture implies...

Conjecture (Density of hyperbolicity)

Hyperbolic rational maps form a dense open subset of Rat_d .

Consider a finitely generated Kleinian group $\Gamma < \mathsf{PSL}_2\mathbb{C}.$

Theorem (Sullivan '85)

The limit set $\Lambda(\Gamma)$ of Γ supports no invariant line field.

Consider a finitely generated Kleinian group $\Gamma < \mathsf{PSL}_2\mathbb{C}.$

Theorem (Sullivan '85)

The limit set $\Lambda(\Gamma)$ of Γ supports no invariant line field.

Somewhat related results:

Theorem (Sullivan '84, Tukia '84, Bishop-Jones '97) $\dim(\Lambda(\Gamma)) < 2$ if and only if Γ is geometrically finite.

Theorem (Agol '04, Calegari-Gabai '06)

Either $\Lambda(\Gamma) = \hat{\mathbb{C}}$ or $\Lambda(\Gamma)$ has zero area.

Similar results have been established, e.g.:

Theorem (McMullen '00)

If every critical point in J(f) is pre-periodic (geometrically finite), then

either
$$J(f) = \hat{\mathbb{C}}$$
 or $\dim(J(f)) < 2$.

Theorem (Przytycki, Urbański '01)

If every critical point in J(f) is non-recurrent, then

either
$$J(f) = \hat{\mathbb{C}}$$
 or $\dim(J(f)) < 2$.

Similar results have been established, e.g.:

Theorem (McMullen '00)

If every critical point in J(f) is pre-periodic (geometrically finite), then

either
$$J(f) = \hat{\mathbb{C}}$$
 or $\dim(J(f)) < 2$.

Theorem (Przytycki, Urbański '01)

If every critical point in J(f) is non-recurrent, then

either
$$J(f) = \hat{\mathbb{C}}$$
 or $\dim(J(f)) < 2$.

Qn: What happens when critical points are recurrent?

 \Rightarrow a common source of recurrence: **rotational dynamics**

Rigid rotation

Consider the rigid rotation

$$R_{\theta}: S^1 \to S^1, \quad z \mapsto e^{2\pi i \theta} z.$$

The closest returns of the orbit $\{c_i := R^i_{\theta}(c)\}_{i \geq 0}$ back to any point $c \in S^1$ are:

where p_n/q_n are the n^{th} best rational approximations of θ .

Rigid rotation

Consider the rigid rotation

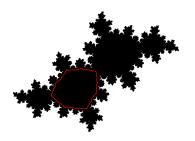
$$R_{\theta}: S^1 \to S^1, \quad z \mapsto e^{2\pi i \theta} z.$$

The closest returns of the orbit $\{c_i := R_\theta^i(c)\}_{i \ge 0}$ back to any point $c \in S^1$ are:

where p_n/q_n are the n^{th} best rational approximations of θ .

We say that an irrational number $\theta \in (0,1)$ is of bounded type if there is some $B \in \mathbb{N}$ such that $\sup_n a_n \leq B$ where

$$\theta = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_2 + \dots}}}.$$


Then,

bounded type
$$\iff$$
 $\log |c_{q_n} - c_0| \asymp -n.$

Rotation domains

Theorem (GF Zhang '11)

If D is a rotation domain of a rational map with bounded type rotation number, then every component of ∂D is a quasicircle containing a critical point.

$$f(z) = z^2 + c$$
 where $c \approx -0.3905 - 0.5868i$

$$f(z) = e^{2\pi i t} z^2 \frac{z-4}{1-4z}$$
 where $t \approx 0.61517$

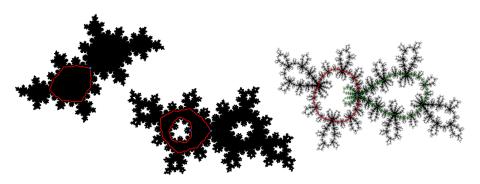
Rotation curves

A rotation curve X of a rational map f is a periodic Jordan curve on which $f^p|_X$ is conjugate to irrational rotation $R_\theta(z) = e^{2\pi i \theta} z$.

Rotation curves

A rotation curve X of a rational map f is a periodic Jordan curve on which $f^p|_X$ is conjugate to irrational rotation $R_\theta(z) = e^{2\pi i \theta} z$.

If $rot(f|_X)$ is bounded type and $X \subset J(f)$, then either


- (1) X is a boundary component of a rotation domain, or
- (2) X is not (1) (Herman curve) and contains both "inner" and "outer" critical points.

Rotation curves

A rotation curve X of a rational map f is a periodic Jordan curve on which $f^p|_X$ is conjugate to irrational rotation $R_\theta(z)=e^{2\pi i\theta}z$.

If $rot(f|_X)$ is bounded type and $X \subset J(f)$, then either

- (1) X is a boundary component of a rotation domain, or
- (2) X is not (1) (Herman curve) and contains both "inner" and "outer" critical points.

Note: all of the examples above are actually quasicircles too!

Rigidity of J-rotational rational maps

A rational map f is J-rotational if it admits bdd type rotation quasicircles X_1, X_2, \dots, X_k such that

$$P(f) \cap J(f) = \bigcup_{i=1}^{k} X_i \cup \{\text{finite set}\}.$$

Any recurrent critical point is in one of the X_i 's.

Rigidity of J-rotational rational maps

A rational map f is J-rotational if it admits bdd type rotation quasicircles X_1, X_2, \dots, X_k such that

$$P(f) \cap J(f) = \bigcup_{i=1}^k X_i \cup \{\text{finite set}\}.$$

Any recurrent critical point is in one of the X_i 's.

Theorem (L. '23)

Consider a J-rotational rational map f.

- J(f) supports no invariant line field.
- ② If f has no Herman curves, area(J(f)) = 0.
- **1** If f has no Herman curves and $\{\text{finite set}\} = \emptyset$, then $\dim(J(f)) < 2$.

Rigidity of J-rotational rational maps

A rational map f is J-rotational if it admits bdd type rotation quasicircles X_1, X_2, \dots, X_k such that

$$P(f) \cap J(f) = \bigcup_{i=1}^k X_i \cup \{\text{finite set}\}.$$

Any recurrent critical point is in one of the X_i 's.

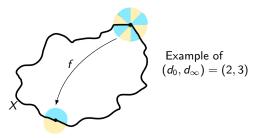
Theorem (L. '23)

Consider a J-rotational rational map f.

- J(f) supports no invariant line field.
- ② If f has no Herman curves, area(J(f)) = 0.
- **③** If f has no Herman curves and $\{\text{finite set}\}$ = ∅, then $\dim(J(f)) < 2$.

Question: If $P(f) \cap J(f) = a$ single Herman curve, can J(f) have positive area? The complexity is similar to Feigenbaum Julia sets.

Beyond the realm of rational maps


$$\text{critical quasicircle map} = \left\{ \begin{array}{l} \text{holomorphic self homeomorphism } f \text{ of a quasicircle } X \\ \text{with a unique critical point on } X \end{array} \right.$$

Beyond the realm of rational maps

 $critical \ quasicircle \ map = \left\{ \begin{array}{l} \text{holomorphic self homeomorphism } f \ \text{of a quasicircle } X \\ \text{with a unique critical point on } X \end{array} \right.$

There are three obvious invariants:

- $\theta = \text{rotation number}$,
- d_0 = inner criticality of the critical point,
- $d_{\infty} =$ outer criticality of the critical point.

The total local degree of the critical point is $d_0+d_\infty-1$.

Rigidity of critical quasicircle maps

Consider two critical quasicircle maps

$$f_1: X_1 \rightarrow X_1$$
 and $f_2: X_2 \rightarrow X_2$

of the same criticalities (d_0,d_∞) and bounded type rotation number θ .

Rigidity of critical quasicircle maps

Consider two critical quasicircle maps

$$f_1: X_1 o X_1 \quad \text{and} \quad f_2: X_2 o X_2$$

of the same criticalities (d_0, d_∞) and bounded type rotation number θ .

One can adapt techniques for critical circle maps (de Faria-de Melo '99) as well as quasicritical circle maps (Avila-Lyubich '22) to prove:

Theorem (L. '23)

There is a QC conjugacy ϕ between f_1 and f_2 on an annular neighborhood of X_1 .

Rigidity of critical quasicircle maps

Consider two critical quasicircle maps

$$f_1: X_1 \rightarrow X_1$$
 and $f_2: X_2 \rightarrow X_2$

of the same criticalities (d_0,d_∞) and bounded type rotation number θ .

One can adapt techniques for critical circle maps (de Faria-de Melo '99) as well as quasicritical circle maps (Avila-Lyubich '22) to prove:

Theorem (L. '23)

There is a QC conjugacy ϕ between f_1 and f_2 on an annular neighborhood of X_1 .

Moreover, due to our NILF Theorem and a deep point argument, we have:

Theorem (L. '23)

The conjugacy ϕ is $C^{1+\alpha}$ on X_1 .

Consequences of $C^{1+\alpha}$ rigidity

Given a critical quasicircle map $f:X\to X$ with bdd type rotation number θ and criticalities (d_0,d_∞) ,

- **1** dim(X) is universal (depending only on θ , d_0 , d_∞);
- ullet if heta is a quadratic irrational, X is self-similar at the critical point with universal scaling factor;
- **o** renormalizations $\mathcal{R}^n f$ converge exponentially fast to a unique \mathcal{R} -invariant horseshoe attractor.

Thank you!