Critical quasicircle maps

Willie Rush Lim

Brown University

Oct 7, 2024

QC maps

A *K*-quasiconformal (QC) map $f: X \to X$ is an orientation-preserving homeomorphism of a Riemann surface X sending a (measurable) field of circles to a field of ellipses of eccentricity uniformly bounded above by $K \ge 1$.

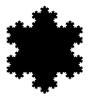
0000000

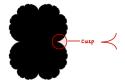
QC maps

A *K*-quasiconformal (QC) map $f: X \to X$ is an orientation-preserving homeomorphism of a Riemann surface X sending a (measurable) field of circles to a field of ellipses of eccentricity uniformly bounded above by $K \ge 1$.

000000 000000 000000

A *K*-quasidisk is the image of the unit disk \mathbb{D} under a *K*-QC map on $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$. Its boundary is called a *K*-quasicircle.



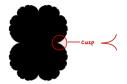


QC maps

A *K*-quasiconformal (QC) map $f: X \to X$ is an orientation-preserving homeomorphism of a Riemann surface X sending a (measurable) field of circles to a field of ellipses of eccentricity uniformly bounded above by $K \ge 1$.



A *K*-quasidisk is the image of the unit disk \mathbb{D} under a *K*-QC map on $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$. Its boundary is called a *K*-quasicircle.



- Moduli spaces of Riemann surfaces can be described in terms of QC maps.
- The universal Teichmüller space can be described as the space of quasicircles.
- Quasicircles appear naturally in the study of Kleinian groups and rational maps.

Diophantine assumption

Fix an irrational $\theta \in (0,1)$ and write

$$\theta = [a_1, a_2, a_3, \ldots] := \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \ldots}}}$$

 $\boldsymbol{\theta}$ is called

- bounded type if $\sup a_n < \infty$.
- periodic type if $a_{n+p} = a_n$ for all n.
- E.g. golden mean = $[1,1,1,\ldots]=\frac{\sqrt{5}-1}{2}$

Diophantine assumption

Fix an irrational $\theta \in (0,1)$ and write

$$\theta = [a_1, a_2, a_3, \ldots] := \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \ldots}}}$$

 $\boldsymbol{\theta}$ is called

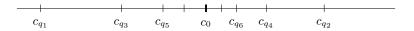
- bounded type if $\sup a_n < \infty$.
- periodic type if $a_{n+p} = a_n$ for all n.

E.g. golden mean
$$= [1,1,1,\ldots] = rac{\sqrt{5}-1}{2}$$

Consider the rigid rotation

$$R_{\theta}: S^1 \to S^1, \quad z \mapsto e^{2\pi i \theta} z.$$

Let $p_n/q_n = [a_1, \ldots, a_n]$ be the n^{th} best rational approximation of θ . The closest returns of the orbit $\{c_i := R^i_{\theta}(c)\}_{i \ge 0}$ back to any point $c \in S^1$ is:



```
(uni-)critical quasicircle map = \begin{cases} analytic self homeomorphism f of a quasicircle X \\ with a unique critical point c on X \end{cases}
```

¹Carsten Lunde Petersen. On holomorphic critical quasicircle maps. ETDS, 24(5):1739-1751, 2004.

(uni-)critical quasicircle map =
$$\begin{cases} analytic self homeomorphism f of a quasicircle X \\ with a unique critical point c on X \end{cases}$$

It follows from a result by Petersen¹ that if $f: X \to X$ has irrational rotation number θ ,

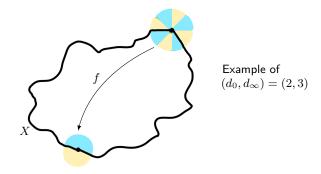
- X has no wandering intervals,
- $f|_X$ is conjugate to rigid rotation $R_{\theta}: S^1 \to S^1$;
- **(a)** θ is of bounded type iff the conjugacy $X \to S^1$ extends to a QC map $\hat{\mathbb{C}} \to \hat{\mathbb{C}}$.

¹Carsten Lunde Petersen. On holomorphic critical quasicircle maps. ETDS, 24(5):1739-1751, 2004.

Inner & outer criticalities

Let $d_0 =$ inner criticality of the critical point and $d_{\infty} =$ outer criticality.

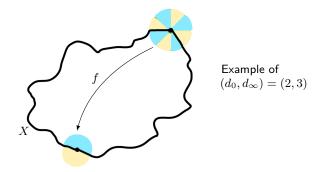
The total local degree of the critical point is $d_0 + d_{\infty} - 1$.



Inner & outer criticalities

Let $d_0 =$ inner criticality of the critical point and $d_{\infty} =$ outer criticality.

The total local degree of the critical point is $d_0 + d_{\infty} - 1$.



Critical circle maps (when $X = S^1$) automatically have $d_0 = d_\infty$. E.g. an example of $(d_0, d_\infty) = (2, 2)$ is the Arnold family:

$$A_t(x) = x + t - \frac{1}{2\pi}\sin(2\pi x), \quad x \in \mathbb{R}/\mathbb{Z}.$$

Realization of arbitrary criticalities

Fix a bounded type θ and a pair of integers $d_0 \geq 2$ and $d_{\infty} \geq 2$.

Theorem I: Realization

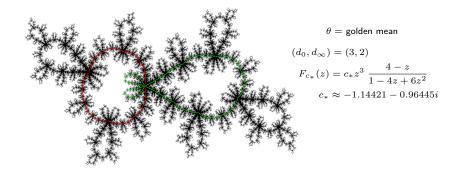
There exist a rational map $F: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ and an invariant quasicircle X such that $F: X \to X$ is a (d_0, d_∞) -critical quasicircle map with rot. no. θ .

Realization of arbitrary criticalities

Fix a bounded type θ and a pair of integers $d_0 \geq 2$ and $d_{\infty} \geq 2$.

Theorem I: Realization

There exist a rational map $F: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ and an invariant quasicircle X such that $F: X \to X$ is a (d_0, d_∞) -critical quasicircle map with rot. no. θ .



Idea behind the proof

There exists a 1-par family of degree $d_0 + d_{\infty} - 1$ rational maps $\{F_m\}_{m>0}$ where

- **(**) F_m has critical fixed points at 0 and ∞ with local degrees d_0 and d_∞ ,
- **2** F_m has a Herman ring \mathbb{H}_m (rotation annulus) with rot. no. θ and modulus m;
- **3** \mathbb{H}_m separates 0 and ∞ ;
- the inner (resp. outer) boundary of 𝔢_m contains a critical point of local degree d₀ (resp. d_∞).

Idea behind the proof

There exists a 1-par family of degree $d_0 + d_{\infty} - 1$ rational maps $\{F_m\}_{m>0}$ where

- **(**) F_m has critical fixed points at 0 and ∞ with local degrees d_0 and d_∞ ,
- **2** F_m has a Herman ring \mathbb{H}_m (rotation annulus) with rot. no. θ and modulus m;
- ${}$ \mathbb{H}_m separates 0 and ∞ ;
- the inner (resp. outer) boundary of 𝔢_m contains a critical point of local degree d₀ (resp. d_∞).

Theorem (A priori bounds)

 $\partial \mathbb{H}_m$ are K-quasicircles, where K is independent of m.

Idea behind the proof

There exists a 1-par family of degree $d_0 + d_{\infty} - 1$ rational maps $\{F_m\}_{m>0}$ where

- **(**) F_m has critical fixed points at 0 and ∞ with local degrees d_0 and d_∞ ,
- **2** F_m has a Herman ring \mathbb{H}_m (rotation annulus) with rot. no. θ and modulus m;
- $\mathbf{3} \ \mathbb{H}_m$ separates 0 and ∞ ;
- the inner (resp. outer) boundary of 𝔢_m contains a critical point of local degree d₀ (resp. d_∞).

Theorem (A priori bounds)

 $\partial \mathbb{H}_m$ are K-quasicircles, where K is independent of m.

As $m \to 0$, $F = \lim_{m \to 0} F_m$ exists and has the desired invariant quasicircle $X = \lim_{t \to 0} \overline{\mathbb{H}_m}$.

Rigidity

Consider two (d_0, d_∞) -critical quasicircle maps

$$f: X \to X$$
 and $g: Y \to Y$

with rot. no. θ . There's a unique conjugacy $\phi: X \to Y$ preserving the critical pts.

²Edson de Faria, Welington de Melo. Rigidity of critical circle mappings II. JAMS, 13:343-370, 1999.

Rigidity

Consider two (d_0, d_∞) -critical quasicircle maps

 $f: X \to X$ and $g: Y \to Y$

with rot. no. θ . There's a unique conjugacy $\phi : X \to Y$ preserving the critical pts.

Theorem II: Rigidity

 ϕ extends to a QC conjugacy on a nbh of X. Also, $\phi|_X$ is $C^{1+\alpha}$ -conformal.

In the special case $X = Y = S^1$, this was proven by de Faria and de Melo².

²Edson de Faria, Welington de Melo. Rigidity of critical circle mappings II. JAMS, 13:343-370, 1999.

Rigidity

Consider two (d_0, d_∞) -critical quasicircle maps

 $f:X\to X \quad \text{ and } \quad g:Y\to Y$

with rot. no. θ . There's a unique conjugacy $\phi : X \to Y$ preserving the critical pts.

Theorem II: Rigidity

 ϕ extends to a QC conjugacy on a nbh of X. Also, $\phi|_X$ is $C^{1+\alpha}$ -conformal.

In the special case $X = Y = S^1$, this was proven by de Faria and de Melo².

Rigidity has many consequences, e.g.

- $H-\dim(X) = H-\dim(Y);$
- **2** H-dim(X) = 1 iff X is C^1 -smooth iff $d_0 = d_\infty$;
- **()** if θ is of periodic type, X is self-similar at the crit. pt. with universal scaling const.

²Edson de Faria, Welington de Melo. Rigidity of critical circle mappings II. JAMS, 13:343-370, 1999.

Renormalization

To prove rigidity, we need the concept of renormalization!

Renormalization

To prove rigidity, we need the concept of renormalization!

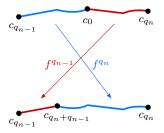
Fix $f: X \to X$ and let $\{c_i := f^i(c)\}_{i \ge 0}$ be the orbit of the critical point c of f.

The **n**th **pre-renormalization** $p\mathcal{R}^n f$ is the pair

$$\left(f^{q_n}|_{[c_{q_{n-1}},c_0]}, f^{q_{n-1}}|_{[c_0,c_{q_n}]}\right)$$

which is the first return map of f back to the interval $[c_{q_{n-1}}, c_{q_n}] \subset X$.

The **n**th renormalization $\mathcal{R}^n f$ is the normalized pair obtained by affine rescaling $c_{q_{n-1}} \mapsto -1$ and $c_0 \mapsto 0$.



Renormalization

To prove rigidity, we need the concept of renormalization!

Fix $f: X \to X$ and let $\{c_i := f^i(c)\}_{i \ge 0}$ be the orbit of the critical point c of f.

The **n**th **pre-renormalization** $p\mathcal{R}^n f$ is the pair

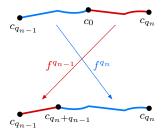
$$\left(f^{q_n}|_{[c_{q_{n-1}},c_0]}, f^{q_{n-1}}|_{[c_0,c_{q_n}]}\right)$$

which is the first return map of f back to the interval $[c_{q_{n-1}}, c_{q_n}] \subset X$.

The **n**th renormalization $\mathcal{R}^n f$ is the normalized pair obtained by affine rescaling $c_{q_{n-1}} \mapsto -1$ and $c_0 \mapsto 0$.

 ${\mathcal R}$ acts on rotation number as the Gauss map:

$$\mathsf{rot}(f) = \theta = [a_1, a_2, \ldots] \implies \mathsf{rot}(\mathcal{R}^n f) = G^n \theta = [a_{n+1}, a_{n+2}, \ldots].$$



Proof of $C^{1+\alpha}$ Rigidity

To construct a QC conjugacy ϕ on a nbh of X,

- $\textbf{Obtain "complex bounds", i.e. uniform geometric control of domain of analyticity of $f^{q_n}, f^{q_{n-1}}$ for $n \gg 1$. }$
- **②** Construct QC conjugacy between $p\mathcal{R}^n f$ and $p\mathcal{R}^n g$ using complex bounds.
- **③** Spread this around by repeated pulling back to a conjugacy on a nbh of X.

Proof of $C^{1+\alpha}$ Rigidity

To construct a QC conjugacy ϕ on a nbh of X,

- Obtain "complex bounds", i.e. uniform geometric control of domain of analyticity of $f^{q_n}, f^{q_{n-1}}$ for $n \gg 1$.
- **②** Construct QC conjugacy between $p\mathcal{R}^n f$ and $p\mathcal{R}^n g$ using complex bounds.
- **③** Spread this around by repeated pulling back to a conjugacy on a nbh of X.

To show that ϕ is $C^{1+\alpha}$ on X,

- **9** Show that $\bar{\partial}\phi = 0$ a.e. on $J = \overline{\text{iterated preimages of } X}$ (no invariant line fields).
- **2** Prove that points on X are uniformly deep in J:

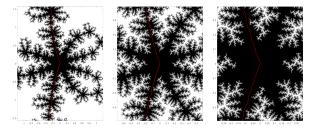
To construct a QC conjugacy ϕ on a nbh of X,

- Obtain "complex bounds", i.e. uniform geometric control of domain of analyticity of f^{q_n}, f^{q_{n-1}</sub> for n ≫ 1.}
- **②** Construct QC conjugacy between $p\mathcal{R}^n f$ and $p\mathcal{R}^n g$ using complex bounds.
- **③** Spread this around by repeated pulling back to a conjugacy on a nbh of X.

To show that ϕ is $C^{1+\alpha}$ on X,

() Show that $\bar{\partial}\phi = 0$ a.e. on $J = \overline{\text{iterated preimages of } X}$ (no invariant line fields).

Prove that points on X are uniformly deep in J:



As we zoom in near the critical pt, J converges to the whole plane exp. fast.

Renormalization fixed point

Fix $\theta_* = [N, N, N, N, ...]$ (fixed type) and $\theta' = [$ whatever, N, N, N, N, ...] (pre-fixed).

Corollary

There is a unique normalized pair ζ_* with rot. no. θ_* satisfying

 $\mathcal{R}\zeta_* = \zeta_*.$

Given any critical quasicircle map $f: X \to X$ with rot. no. θ' ,

 $\mathcal{R}^n f \longrightarrow \zeta_*$ exp. fast.

Renormalization fixed point

Fix $\theta_* = [N, N, N, N, ...]$ (fixed type) and $\theta' = [whatever, N, N, N, N, ...]$ (pre-fixed).

Corollary

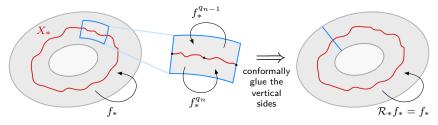
There is a unique normalized pair ζ_* with rot. no. θ_* satisfying

 $\mathcal{R}\zeta_* = \zeta_*.$

Given any critical quasicircle map $f: X \to X$ with rot. no. θ' ,

 $\mathcal{R}^n f \longrightarrow \zeta_*$ exp. fast.

One can also glue the two ends of ζ_* to obtain a critical quasicircle map $f_*: X_* \to X_*$ fixed by a renormalization operator \mathcal{R}_* :



Given a critical quasicircle map $f: X \to X$, fix a small $\varepsilon > 0$ and a skinny annular nbh A of X, and define the Banach ball:

$$\mathcal{B}_{\varepsilon}(f) := \Big\{ g \in \operatorname{Hol}(A, \mathbb{C}) \ \Big| \ g \text{ has a unique critical point and } \sup_{z \in A} |g(z) - f(z)| < \varepsilon \Big\}.$$

Given a critical quasicircle map $f: X \to X$, fix a small $\varepsilon > 0$ and a skinny annular nbh A of X, and define the Banach ball:

$$\mathcal{B}_{\varepsilon}(f) := \Big\{g \in \operatorname{Hol}(A, \mathbb{C}) \; \Big| \; g \text{ has a unique critical point and } \sup_{z \in A} |g(z) - f(z)| < \varepsilon \Big\}.$$

We will extend our renormalization operator \mathcal{R}_* on a Banach nbh $\mathcal{B}_{\varepsilon}(f_*)$ in a natural way.

Theorem III: Hyperbolicity

 \mathcal{R}_* can be naturally extended to a compact analytic operator on $\mathcal{B}_{arepsilon}(f_*)$ such that:

- **(**) \mathcal{R}_* has a unique fixed point f_* , which is hyperbolic.
- **2** $\mathcal{W}^s_{\mathsf{loc}}(f_*) = \{g \in \mathcal{B}_{\varepsilon}(f_*) \mid g \text{ is a critical quasicircle map with rot. no. } \theta_*\}.$

 $im \mathcal{W}^u_{\mathsf{loc}}(f_*) = 1.$

In the circle case $(d_0 = d_\infty)$, the real version of this was proven by Yampolsky³.

³Michael Yampolsky, Hyperbolicity of renormalization of critical circle maps. Publ. Math. IHES, 96:1–41, 2002.

Theorem III: Hyperbolicity

 \mathcal{R}_* can be naturally extended to a compact analytic operator on $\mathcal{B}_{\varepsilon}(f_*)$ such that:

- **(**) \mathcal{R}_* has a unique fixed point f_* , which is hyperbolic.
- **2** $\mathcal{W}^s_{\mathsf{loc}}(f_*) = \{g \in \mathcal{B}_{\varepsilon}(f_*) \mid g \text{ is a critical quasicircle map with rot. no. } \theta_*\}.$

 $im \mathcal{W}^u_{\mathsf{loc}}(f_*) = 1.$

In the circle case $(d_0 = d_\infty)$, the real version of this was proven by Yampolsky³.

Corollary

Consider a critical quasicircle map $f: X \to X$ with preperiodic rot. no. θ' . Then,

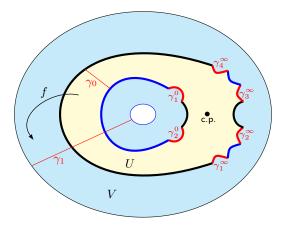
 $S_{\varepsilon}(f) := \left\{ g \in \mathcal{B}_{\varepsilon}(f) \; \middle| \; \begin{array}{c} g \text{ has an invariant quasicircle } X_g \text{ on which} \\ g \text{ is a critical quasicircle map with rot. no. } \theta' \end{array} \right\}.$

is an analytic submanifold of $\mathcal{B}_{\varepsilon}(f)$ of codimension ≤ 1 . Moreover, X_q moves holomorphically in $g \in S_{\varepsilon}(f)$.

³Michael Yampolsky, Hyperbolicity of renormalization of critical circle maps. Publ. Math. IHES, 96:1-41, 2002.

Key ingredient: Corona structure

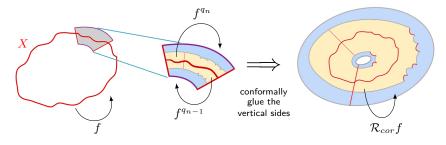
A corona is a holomorphic map $f: U \to V$ between nested annuli with radial arcs $\gamma_0 \subset U$ and $\gamma_1 \subset V$ such that $f: U \setminus \gamma_0 \to V \setminus \gamma_1$ is a covering map branched at a unique crit. pt.



A corona $f:(U,\gamma_0) \to (V,\gamma_1)$ with criticalities $(d_0,d_\infty)=(2,3)$

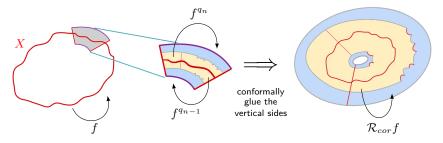
Corona renormalization operator

Every critical quasicircle map $f: X \to X$ can be renormalized to a corona:



Corona renormalization operator

Every critical quasicircle map $f: X \to X$ can be renormalized to a corona:



 \mathcal{R}_{cor} naturally extends to an analytic operator on $\mathcal{B}_{\varepsilon}(f)$.

Since $f_*: X_* \to X_*$ can be renormalized to itself, f_* admits a corona structure. We extend $\mathcal{R}_*: f_* \mapsto f_*$ to an analytic renormalization operator on $\mathcal{B}_{\varepsilon}(f_*)$. With the corona framework, we can prove most of the theorem somewhat easily.

Most difficult part: there is only one unstable direction?

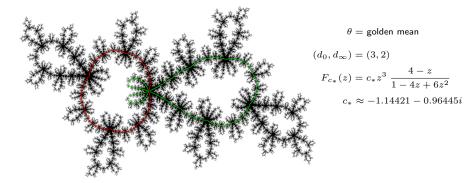
With the corona framework, we can prove most of the theorem somewhat easily.

Most difficult part: there is only one unstable direction?

Idea:

- **1** Infinite anti-renormalization tower induces global transcendental dynamics.
- **2** Identify $\mathcal{W}^u_{\text{loc}}$ with a parameter space of transcendental dynamical systems.
- Study the rigidity properties of the escaping set of such transcendental maps.

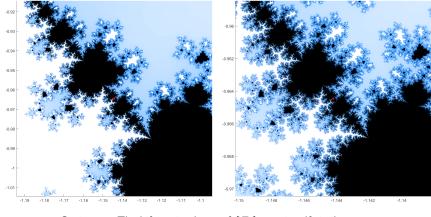
Recall this example...



The map F_{c_*} naturally lives in the 1-parameter family

$$\left\{F_c = cz^3 \; \frac{4-z}{1-4z+6z^2}\right\}_{c \in \mathbb{C}^*}$$

The parameter space picture



Conjecture: The bifurcation locus of $\{F_c\}_{c\in\mathbb{C}^*}$ is self-similar at c_{\star} .

Rmk: Self-similarity of the Mandelbrot set at the Feigenbaum param. was proven by Lyubich⁴.

⁴Mikhail Lyubich. Feigenbaum-Coullet-Tresser universality and Milnor's hairiness conjecture. Annals, 149(2):319-420, 1999.

Thank you!