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QC maps

A K-quasiconformal (QC) map f: X — X is an orientation-preserving homeomorphism
of a Riemann surface X sending a (measurable) field of circles to a field of ellipses of
eccentricity uniformly bounded above by K > 1.

D _ Z
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A K-quasiconformal (QC) map f: X — X is an orientation-preserving homeomorphism
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a

A K-quasidisk is the image of the unit disk D under a K-QC map on C = CU {o0}.
Its boundary is called a K-quasicircle.

— cusp _<

3/38



QC maps

A K-quasiconformal (QC) map f: X — X is an orientation-preserving homeomorphism
of a Riemann surface X sending a (measurable) field of circles to a field of ellipses of
eccentricity uniformly bounded above by K > 1.

D _ Z

A K-quasidisk is the image of the unit disk D under a K-QC map on C = CU {o0}.
Its boundary is called a K-quasicircle.

— cusp _<

- Moduli spaces of Riemann surfaces can be described in terms of QC maps.
- The universal Teichmiiller space can be described as the space of quasicircles.
- Quasicircles appear naturally in the study of Kleinian groups and rational maps.
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Diophantine assumption
Fix an irrational 6 € (0,1) and write

0= [al,ag,a3, .. } =

0 is called
e bounded type if supa, < occ.
e periodic type if anyp = an for all n.

E.g. golden mean = [1,1,1,...] = @
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Diophantine assumption
Fix an irrational 6 € (0,1) and write

0= [al,ag,ag, .. } =

0 is called

e bounded type if supa, < occ.

e periodic type if anyp = an for all n.
E.g. golden mean = [1,1,1,...] = @

Consider the rigid rotation
Ry: S — S’l, 2 205,

Let pn/qn = [a1, . .., an] be the n" best rational approximation of 6.
The closest returns of the orbit {c; := Rj(c)}i>0 back to any point ¢ € S* is:
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Critical quasicircle maps

. . . analytic self homeomorphism f of a quasicircle X
(uni-)critical quasicircle map = . . o )
with a unique critical point c on X

LCarsten Lunde Petersen. On holomorphic critical quasicircle maps. ETDS, 24(5):1739-1751, 2004.
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Critical quasicircle maps

. . . analytic self homeomorphism f of a quasicircle X
(uni-)critical quasicircle map = . . o )
with a unique critical point c on X

It follows from a result by Petersen® that if f : X — X has irrational rotation number 6,
© X has no wandering intervals,
@ f|x is conjugate to rigid rotation Ry : St — st
© 0 is of bounded type iff the conjugacy X — S* extends to a QC map Cc—C.

LCarsten Lunde Petersen. On holomorphic critical quasicircle maps. ETDS, 24(5):1739-1751, 2004.
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Inner & outer criticalities

Let do = inner criticality of the critical point
and do = outer criticality.
The total local degree of the critical point is do + doc — 1.

Example of
(do,doo) = (2,3)
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Inner & outer criticalities

Let do = inner criticality of the critical point
and do = outer criticality.
The total local degree of the critical point is do + doc — 1.

Example of
(do,doo) = (2,3)

Critical circle maps (when X = S') automatically have dy = deo.
E.g. an example of (do,d) = (2,2) is the Arnold family:

Ai(z) =x+t— 2i sin(2rz), x € R/Z.
T
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Realization of arbitrary criticalities

Fix a bounded type 6 and a pair of integers do > 2 and doo > 2.

Theorem |: Realization

There exist a rational map F': C — C and an invariant quasicircle X such that
F: X — X is a (do, ds )-critical quasicircle map with rot. no. 6.
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Realization of arbitrary criticalities

Fix a bounded type 6 and a pair of integers do > 2 and doo > 2.

Theorem |: Realization

There exist a rational map F': C — C and an invariant quasicircle X such that
F: X — X is a (do, ds )-critical quasicircle map with rot. no. 6.

6 = golden mean
(do, dss) = (3,2)
4—z
Fe =cez? ———
LB = e T
cx &= —1.14421 — 0.964457
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Idea behind the proof

There exists a 1-par family of degree do + do — 1 rational maps {Fp», }m>0 where
@ F,, has critical fixed points at 0 and oo with local degrees dy and do,
@ F,, has a Herman ring H,, (rotation annulus) with rot. no. # and modulus m;
© M, separates 0 and oc;

© the inner (resp. outer) boundary of H,, contains a critical point of local degree do
(resp. doo)-
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Idea behind the proof

There exists a 1-par family of degree do + do — 1 rational maps {Fp», }m>0 where
@ F,, has critical fixed points at 0 and oo with local degrees dy and do,
@ F,, has a Herman ring H,, (rotation annulus) with rot. no. # and modulus m;
© M, separates 0 and oc;

© the inner (resp. outer) boundary of H,, contains a critical point of local degree do
(resp. doo)-

m is large m is small

(=

OH,,, are K-quasicircles, where K is independent of m.

Theorem (A priori bounds) }
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Idea behind the proof

There exists a 1-par family of degree do + do — 1 rational maps {Fp», }m>0 where
@ F,, has critical fixed points at 0 and oo with local degrees dy and do,
@ F,, has a Herman ring H,, (rotation annulus) with rot. no. # and modulus m;
© M, separates 0 and oc;

© the inner (resp. outer) boundary of H,, contains a critical point of local degree do
(resp. doo)-

m is large m is small

OHl,,, are K-quasicircles, where K is independent of m.

Theorem (A priori bounds) }

As m — 0, F = lim F,, exists and has the desired invariant quasicircle X = lim H,,.
m—0 t—0
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Rigidity

Consider two (do, ds )-critical quasicircle maps
f: X=X and g:Y Y

with rot. no. 6. There's a unique conjugacy ¢ : X — Y preserving the critical pts.

2Edson de Faria, Welington de Melo. Rigidity of critical circle mappings Il. JAMS, 13:343—370, 1999.
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Rigidity

Consider two (do, ds )-critical quasicircle maps
f: X=X and g:Y Y

with rot. no. 6. There's a unique conjugacy ¢ : X — Y preserving the critical pts.

Theorem Il: Rigidity

extends to a QC conjugacy on a nbh of X. Also, ¢|x is C'T%-conformal.
¢ jugacy

In the special case X =Y = S, this was proven by de Faria and de Melo?.

2Edson de Faria, Welington de Melo. Rigidity of critical circle mappings Il. JAMS, 13:343—370, 1999.
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Rigidity

Consider two (do, ds )-critical quasicircle maps
f: X=X and g:Y Y

with rot. no. 6. There's a unique conjugacy ¢ : X — Y preserving the critical pts.

Theorem Il: Rigidity

extends to a QC conjugacy on a nbh of X. Also, ¢|x is C'T%-conformal.
¢ jugacy

In the special case X =Y = S, this was proven by de Faria and de Melo?.

Rigidity has many consequences, e.g.
Q@ H-dim(X) = H-dim(Y);
Q@ H-dim(X) =1iff X is Cl-smooth iff dy = doo;

@ if 0 is of periodic type, X is self-similar at the crit. pt. with universal scaling const.

2Edson de Faria, Welington de Melo. Rigidity of critical circle mappings Il. JAMS, 13:343—370, 1999.
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Renormalization

To prove rigidity, we need the concept of renormalization!
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Renormalization

To prove rigidity, we need the concept of renormalization!
Fix f: X — X and let {c; := f*(c)}i>0 be the orbit of the critical point c of f.

The n'" pre-renormalization pR™f is the pair

./\—f‘\/-c-.

_ co
(f‘qn |[an71 ,colr f‘In ! |[c0,cqn]) Cqn_1 n

which is the first return map of f back to the interval
[Cq"71 ) CQn} cX.

The n*" renormalization R™f is
the normalized pair obtained by affine rescaling
Cgp_1 — —1 and co — 0. Cqn—1
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Renormalization

To prove rigidity, we need the concept of renormalization!
Fix f: X — X and let {c; := f*(c)}i>0 be the orbit of the critical point c of f.

The n'" pre-renormalization pR™f is the pair

./\—f‘\/-c-.

_ co
(f‘qn |[an71 ,colr fqn ! |[COqun]) Cqn_1 n

which is the first return map of f back to the interval
[C(In71 ) CQn} cX.

The n*" renormalization R™f is
the normalized pair obtained by affine rescaling
Cgp_1 — —1 and co — 0. Cqn—1

R acts on rotation number as the Gauss map:

rot(f) =0 =[a1,a2,...] = rot(R"f)=G"0=[ant1,ant2,...]

21/38



Proof of C'** Rigidity

To construct a QC conjugacy ¢ on a nbh of X,
@ Obtain “complex bounds", i.e. uniform geometric control of domain of analyticity of
[, fi=1 for n > 1.
@ Construct QC conjugacy between pR" f and pR"g using complex bounds.
© Spread this around by repeated pulling back to a conjugacy on a nbh of X.
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Proof of C'** Rigidity

To construct a QC conjugacy ¢ on a nbh of X,
@ Obtain “complex bounds", i.e. uniform geometric control of domain of analyticity of
[, fi=1 for n > 1.
@ Construct QC conjugacy between pR" f and pR"g using complex bounds.
© Spread this around by repeated pulling back to a conjugacy on a nbh of X.

To show that ¢ is C*T on X,
© Show that ¢ = 0 a.e. on J = iterated preimages of X (no invariant line fields).
@ Prove that points on X are uniformly deep in J:
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Proof of C'** Rigidity

To construct a QC conjugacy ¢ on a nbh of X,
@ Obtain “complex bounds", i.e. uniform geometric control of domain of analyticity of
[, fi=1 for n > 1.
@ Construct QC conjugacy between pR" f and pR"g using complex bounds.
© Spread this around by repeated pulling back to a conjugacy on a nbh of X.

To show that ¢ is C*T on X,
© Show that ¢ = 0 a.e. on J = iterated preimages of X (no invariant line fields).
@ Prove that points on X are uniformly deep in J:

As we zoom in near the critical pt, J converges to the whole plane exp. fast.
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Renormalization fixed point

Fix 0. = [N, N, N, N,...] (fixed type) and 6’ = [whatever, N, N, N, N, ...] (pre-fixed).

Corollary

There is a unique normalized pair (. with rot. no. 0. satisfying
RCx = (-

Given any critical quasicircle map f : X — X with rot. no. ¢’,

R"f — (. exp. fast.
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Renormalization fixed point
Fix 0. = [N, N, N, N,...] (fixed type) and 6’ = [whatever, N, N, N, N, ...] (pre-fixed).

Corollary

There is a unique normalized pair (. with rot. no. 0. satisfying
R = Ce.
Given any critical quasicircle map f : X — X with rot. no. ¢’,

R"f — (. exp. fast.

One can also glue the two ends of (. to obtain a critical quasicircle map f. : X. — X,
fixed by a renormalization operator R.:

dn—1
*
X*
conformally

glue the
vertical

an .

* sides
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Banach neighborhood

Given a critical quasicircle map f : X — X, fix a small £ > 0 and a skinny annular nbh A
of X, and define the Banach ball:

B:(f) = {g € Hol(A, C) | g has a unique critical point and sup |g(z) — f(2)| < 5}.
z€EA
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Banach neighborhood

Given a critical quasicircle map f : X — X, fix a small £ > 0 and a skinny annular nbh A
of X, and define the Banach ball:

B:(f) = {g € Hol(A, C) | g has a unique critical point and sup |g(z) — f(2)| < 5}.
z€EA

We will extend our renormalization operator R on a Banach nbh B.(f.) in a natural way.
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Hyperbolicity of renormalization

Theorem IlI: Hyperbolicity

R« can be naturally extended to a compact analytic operator on B.(f.) such that:

© R. has a unique fixed point f., which is hyperbolic.
@ Wi.(f«) ={g € B=(f+) | g is a critical quasicircle map with rot. no. 6.}.
Q@ dimWi (f«) = 1.

In the circle case (do = doo), the real version of this was proven by Yampolsky?®.

3Michael Yampolsky, Hyperbolicity of renormalization of critical circle maps. Publ. Math. IHES, 96:1-41, 2002.
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Hyperbolicity of renormalization

Theorem IlI: Hyperbolicity

R« can be naturally extended to a compact analytic operator on B.(f.) such that:

© R. has a unique fixed point f., which is hyperbolic.
@ Wi.(f«) ={g € B=(f+) | g is a critical quasicircle map with rot. no. 6.}.
Q@ dimWi (f«) = 1.

y
In the circle case (do = dw), the real version of this was proven by Yampolsky?®.
Corollary
Consider a critical quasicircle map f : X — X with preperiodic rot. no. §'. Then,
. g has an invariant quasicircle X, on which

5=(f) = {g € B:(f) ‘ g is a critical quasicircle map with rot. no. ¢’
is an analytic submanifold of B.(f) of codimension < 1. Moreover,
X4 moves holomorphically in g € S<(f). )

3Michael Yampolsky, Hyperbolicity of renormalization of critical circle maps. Publ. Math. IHES, 96:1-41, 2002.
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Key ingredient: Corona structure

A corona is a holomorphic map f : U — V between nested annuli with radial arcs vo C U
and 71 C V such that f: U\ — V\71 is a covering map branched at a unique crit. pt.

A corona f : (U,v0) — (V,~1) with criticalities (do, deo) = (2, 3)
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Corona renormalization operator

Every critical quasicircle map f : X — X can be renormalized to a corona:

far
G
X €
> r
¢
conformally
glue the \\j
fqnfl vertical sides
f RCDTf
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Corona renormalization operator

Every critical quasicircle map f : X — X can be renormalized to a corona:
fqn
— T
== ¢
— ~
&
conformally
glue the
fin-1 vertical sides
f

Rcorf

»

Recor naturally extends to an analytic operator on B.(f).

Since fi : Xi» — X, can be renormalized to itself, f. admits a corona structure.
We extend R. : f« — f. to an analytic renormalization operator on B (f).
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Most difficult part of the proof

With the corona framework, we can prove most of the theorem somewhat easily.

Most difficult part: there is only one unstable direction?
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Most difficult part of the proof

With the corona framework, we can prove most of the theorem somewhat easily.
Most difficult part: there is only one unstable direction?

Idea:
@ Infinite anti-renormalization tower induces global transcendental dynamics.
@ Identify Wi, with a parameter space of transcendental dynamical systems.

© Study the rigidity properties of the escaping set of such transcendental maps.
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Recall this example...

6 = golden mean

4—z
1—4z + 622
cy & —1.14421 — 0.96445¢

F. (2) = c.2®

The map F., naturally lives in the 1-parameter family

4—z
Fc:czg’i} .
{ 1—4z 4622 ceCr
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The parameter space picture

0.962

0,966

099 -
-0.068

B

115 -1.148 -1.148 1144 1142 114

Conjecture: The bifurcation locus of {F¢} ccx« is self-similar at c,.

Rmk: Self-similarity of the Mandelbrot set at the Feigenbaum param. was proven by Lyubich?.

4Mikhail Lyubich. Feigenbaum-Coullet-Tresser universality and Milnor’s hairiness conjecture. Annals, 149(2):319—420, 1999.
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Thank you!
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