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QC maps

A K-quasiconformal (QC) map f : X → X is an orientation-preserving homeomorphism
of a Riemann surface X sending a (measurable) field of circles to a field of ellipses of
eccentricity uniformly bounded above by K ≥ 1.

A K-quasidisk is the image of the unit disk D under a K-QC map on Ĉ = C ∪ {∞}.
Its boundary is called a K-quasicircle.

- Moduli spaces of Riemann surfaces can be described in terms of QC maps.
- The universal Teichmüller space can be described as the space of quasicircles.
- Quasicircles appear naturally in the study of Kleinian groups and rational maps.
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Diophantine assumption

Fix an irrational θ ∈ (0, 1) and write

θ = [a1, a2, a3, . . .] :=
1

a1 +
1

a2+
1

a3+...

.

θ is called
bounded type if sup an < ∞.
periodic type if an+p = an for all n.

E.g. golden mean = [1, 1, 1, . . .] =
√
5−1
2

Consider the rigid rotation

Rθ : S1 → S1, z 7→ e2πiθz.

Let pn/qn = [a1, . . . , an] be the nth best rational approximation of θ.
The closest returns of the orbit {ci := Ri

θ(c)}i≥0 back to any point c ∈ S1 is:

c0cq1 cq2cq3 cq4cq5 cq6
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Critical quasicircle maps

(uni-)critical quasicircle map =

{
analytic self homeomorphism f of a quasicircle X

with a unique critical point c on X

It follows from a result by Petersen1 that if f : X → X has irrational rotation number θ,
1 X has no wandering intervals,
2 f |X is conjugate to rigid rotation Rθ : S1 → S1;
3 θ is of bounded type iff the conjugacy X → S1 extends to a QC map Ĉ → Ĉ.

1Carsten Lunde Petersen. On holomorphic critical quasicircle maps. ETDS, 24(5):1739–1751, 2004.
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Inner & outer criticalities

Let d0 = inner criticality of the critical point
and d∞ = outer criticality.
The total local degree of the critical point is d0 + d∞ − 1.

Example of
(d0, d∞) = (2, 3)

X

f

Critical circle maps (when X = S1) automatically have d0 = d∞.
E.g. an example of (d0, d∞) = (2, 2) is the Arnold family:

At(x) = x+ t− 1

2π
sin(2πx), x ∈ R/Z.
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Realization of arbitrary criticalities

Fix a bounded type θ and a pair of integers d0 ≥ 2 and d∞ ≥ 2.

Theorem I: Realization
There exist a rational map F : Ĉ → Ĉ and an invariant quasicircle X such that
F : X → X is a (d0, d∞)-critical quasicircle map with rot. no. θ.

θ = golden mean

(d0, d∞) = (3, 2)

Fc∗ (z) = c∗z
3 4 − z

1 − 4z + 6z2

c∗ ≈ −1.14421 − 0.96445i
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Idea behind the proof

There exists a 1-par family of degree d0 + d∞ − 1 rational maps {Fm}m>0 where
1 Fm has critical fixed points at 0 and ∞ with local degrees d0 and d∞,
2 Fm has a Herman ring Hm (rotation annulus) with rot. no. θ and modulus m;
3 Hm separates 0 and ∞;
4 the inner (resp. outer) boundary of Hm contains a critical point of local degree d0

(resp. d∞).

m is large m is small m = 0

Hm F−1
m (Hm)

X

F−1(X)

Theorem (A priori bounds)
∂Hm are K-quasicircles, where K is independent of m.

As m → 0, F = lim
m→0

Fm exists and has the desired invariant quasicircle X = lim
t→0

Hm.
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Rigidity

Consider two (d0, d∞)-critical quasicircle maps
f : X → X and g : Y → Y

with rot. no. θ. There’s a unique conjugacy φ : X → Y preserving the critical pts.

Theorem II: Rigidity
φ extends to a QC conjugacy on a nbh of X. Also, φ|X is C1+α-conformal.

In the special case X = Y = S1, this was proven by de Faria and de Melo2.

Rigidity has many consequences, e.g.
1 H-dim(X) = H-dim(Y );
2 H-dim(X) = 1 iff X is C1-smooth iff d0 = d∞;
3 if θ is of periodic type, X is self-similar at the crit. pt. with universal scaling const.

2Edson de Faria, Welington de Melo. Rigidity of critical circle mappings II. JAMS, 13:343–-370, 1999.
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Renormalization

To prove rigidity, we need the concept of renormalization!

Fix f : X → X and let {ci := f i(c)}i≥0 be the orbit of the critical point c of f .

The nth pre-renormalization pRnf is the pair(
fqn |[cqn−1

,c0], f
qn−1 |[c0,cqn ]

)
which is the first return map of f back to the interval
[cqn−1 , cqn ] ⊂ X.

The nth renormalization Rnf is
the normalized pair obtained by affine rescaling
cqn−1 7→ −1 and c0 7→ 0.

fqnfqn−1

c0 cqncqn−1

cqn+qn−1
cqncqn−1

R acts on rotation number as the Gauss map:

rot(f) = θ = [a1, a2, . . .] =⇒ rot(Rnf) = Gnθ = [an+1, an+2, . . .].
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Proof of C1+α Rigidity

To construct a QC conjugacy φ on a nbh of X,
1 Obtain “complex bounds“, i.e. uniform geometric control of domain of analyticity of

fqn , fqn−1 for n � 1.
2 Construct QC conjugacy between pRnf and pRng using complex bounds.
3 Spread this around by repeated pulling back to a conjugacy on a nbh of X.

To show that φ is C1+α on X,
1 Show that ∂̄φ = 0 a.e. on J = iterated preimages of X (no invariant line fields).
2 Prove that points on X are uniformly deep in J :

As we zoom in near the critical pt, J converges to the whole plane exp. fast.
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Renormalization fixed point

Fix θ∗ = [N,N,N,N, . . .] (fixed type) and θ′ = [whatever, N,N,N,N, . . .] (pre-fixed).

Corollary
There is a unique normalized pair ζ∗ with rot. no. θ∗ satisfying

Rζ∗ = ζ∗.

Given any critical quasicircle map f : X → X with rot. no. θ′,

Rnf −→ ζ∗ exp. fast.

One can also glue the two ends of ζ∗ to obtain a critical quasicircle map f∗ : X∗ → X∗
fixed by a renormalization operator R∗:

fqn
∗

f
qn−1
∗

f∗

X∗

R∗f∗ = f∗

=⇒
conformally

glue the
vertical
sides
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Banach neighborhood

Given a critical quasicircle map f : X → X, fix a small ε > 0 and a skinny annular nbh A
of X, and define the Banach ball:

Bε(f) :=
{
g ∈ Hol(A,C)

∣∣∣ g has a unique critical point and sup
z∈A

|g(z)− f(z)| < ε
}
.

We will extend our renormalization operator R∗ on a Banach nbh Bε(f∗) in a natural way.
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Hyperbolicity of renormalization

Theorem III: Hyperbolicity
R∗ can be naturally extended to a compact analytic operator on Bε(f∗) such that:

1 R∗ has a unique fixed point f∗, which is hyperbolic.
2 Ws

loc(f∗) = {g ∈ Bε(f∗) | g is a critical quasicircle map with rot. no. θ∗}.
3 dimWu

loc(f∗) = 1.

In the circle case (d0 = d∞), the real version of this was proven by Yampolsky3.

Corollary
Consider a critical quasicircle map f : X → X with preperiodic rot. no. θ′. Then,

Sε(f) :=

{
g ∈ Bε(f)

∣∣∣∣ g has an invariant quasicircle Xg on which
g is a critical quasicircle map with rot. no. θ′

}
.

is an analytic submanifold of Bε(f) of codimension ≤ 1. Moreover,
Xg moves holomorphically in g ∈ Sε(f).

3Michael Yampolsky, Hyperbolicity of renormalization of critical circle maps. Publ. Math. IHES, 96:1–41, 2002.
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Key ingredient: Corona structure

A corona is a holomorphic map f : U → V between nested annuli with radial arcs γ0 ⊂ U
and γ1 ⊂ V such that f : U\γ0 → V \γ1 is a covering map branched at a unique crit. pt.

U

V

γ0
2

γ0
1

γ∞
1

γ∞
2

γ∞
3

γ∞
4

γ0

γ1

•c.p.

f

A corona f : (U, γ0) → (V, γ1) with criticalities (d0, d∞) = (2, 3)
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Corona renormalization operator

Every critical quasicircle map f : X → X can be renormalized to a corona:

f

X

Rcorf

fqn

fqn−1

=⇒
conformally

glue the
vertical sides

Rcor naturally extends to an analytic operator on Bε(f).

Since f∗ : X∗ → X∗ can be renormalized to itself, f∗ admits a corona structure.
We extend R∗ : f∗ 7→ f∗ to an analytic renormalization operator on Bε(f∗).
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Most difficult part of the proof

With the corona framework, we can prove most of the theorem somewhat easily.

Most difficult part: there is only one unstable direction?

Idea:
1 Infinite anti-renormalization tower induces global transcendental dynamics.
2 Identify Wu

loc with a parameter space of transcendental dynamical systems.
3 Study the rigidity properties of the escaping set of such transcendental maps.
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Recall this example...

θ = golden mean

(d0, d∞) = (3, 2)

Fc∗ (z) = c∗z
3 4 − z

1 − 4z + 6z2

c∗ ≈ −1.14421 − 0.96445i

The map Fc∗ naturally lives in the 1-parameter family{
Fc = cz3

4− z

1− 4z + 6z2

}
c∈C∗

.
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The parameter space picture

Conjecture: The bifurcation locus of {Fc}c∈C∗ is self-similar at c?.

Rmk: Self-similarity of the Mandelbrot set at the Feigenbaum param. was proven by Lyubich4.

4Mikhail Lyubich. Feigenbaum-Coullet-Tresser universality and Milnor’s hairiness conjecture. Annals, 149(2):319–-420, 1999.
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Thank you!

38 / 38


	Introduction
	Realization
	Rigidity
	Hyperbolicity

