# Renormalization theory of Herman curves

Willie Rush Lim

Brown University

Aug 4, 2025

## Diophantine assumption

Fix an irrational  $\theta \in (0,1)$  and write

$$\theta = [a_1, a_2, a_3, \dots] := \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}}.$$

 $\theta$  is called

- bounded if  $\sup a_n < \infty$ .
- **periodic** with period p if  $a_{n+p} = a_n$  for all n.

E.g. golden mean 
$$=[1,1,1,\ldots]=\frac{\sqrt{5}-1}{2}$$

## Diophantine assumption

Fix an irrational  $\theta \in (0,1)$  and write

$$\theta = [a_1, a_2, a_3, \dots] := \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}}.$$

 $\theta$  is called

- bounded if  $\sup a_n < \infty$ .
- **periodic** with period p if  $a_{n+p} = a_n$  for all n.

E.g. golden mean 
$$=[1,1,1,\ldots]=rac{\sqrt{5}-1}{2}$$

The  $n^{\text{th}}$  rational approximation of  $\theta$  is

$$\frac{p_n}{q_n} = [a_1, \dots, a_n].$$

#### Rotation curves

An invariant Jordan curve  $\mathbf{H}\subset \hat{\mathbb{C}}$  of a holomorphic map f is

- a rotation curve if  $f|_{\mathbf{H}}$  is conjugate to an irrational rotation  $R_{\theta}: \mathbb{T} \to \mathbb{T}$ ;
- a Herman curve if additionally it isn't contained in the closure of a rotation domain.

#### Rotation curves

An invariant Jordan curve  $\mathbf{H}\subset \hat{\mathbb{C}}$  of a holomorphic map f is

- a rotation curve if  $f|_{\mathbf{H}}$  is conjugate to an irrational rotation  $R_{\theta}: \mathbb{T} \to \mathbb{T}$ ;
- a Herman curve if additionally it isn't contained in the closure of a rotation domain.

Trichotomy: When a rotation curve  ${\bf H}$  has bounded rotation number  $\theta$ , there are 3 cases:

- a.  $\mathbf{H}=$  an analytic curve inside a rotation domain,
- b. H = the boundary of a rotation domain containing a critical point of f,
- h. H = a Herman curve containing inner and outer critical points of f.

#### Rotation curves

An invariant Jordan curve  $\mathbf{H}\subset \hat{\mathbb{C}}$  of a holomorphic map f is

- a rotation curve if  $f|_{\mathbf{H}}$  is conjugate to an irrational rotation  $R_{\theta}: \mathbb{T} \to \mathbb{T}$ ;
- a Herman curve if additionally it isn't contained in the closure of a rotation domain.

<u>Trichotomy:</u> When a rotation curve **H** has bounded rotation number  $\theta$ , there are 3 cases:

- a.  $\mathbf{H}=$  an analytic curve inside a rotation domain,
- b.  $\mathbf{H}=$  the boundary of a rotation domain containing a critical point of f,
- h.  $\mathbf{H}=\mathbf{a}$  Herman curve containing inner and outer critical points of f.





#### Motivation

Siegel disks and Herman rings have been pretty well studied by many many people. On the other hand, not much is known about Herman curves.

#### Key questions

- Regularity and smoothness of Herman curves?
- 2 Rigidity properties?
- Regularity of conjugacy classes?
- Structural instability?

From now on, we will consider a Herman curve  $f: \mathbf{H} \to \mathbf{H}$  with a single critical point c.

#### Inner & outer criticalities

#### Denote

$$d_0 = \text{ inner criticality of } c,$$
  $d_{\infty} = \text{ outer criticality of } c.$ 

The total local degree of the critical point c is  $d_0 + d_\infty - 1$ .



#### Inner & outer criticalities

#### Denote

$$d_0 = \text{ inner criticality of } c,$$
  $d_{\infty} = \text{ outer criticality of } c.$ 

The total local degree of the critical point c is  $d_0 + d_{\infty} - 1$ .



Critical circle maps (when  ${\bf H}=S^1$ ) automatically have  $d_0=d_\infty.$  E.g. The Arnold family,  $(d_0,d_\infty)=(2,2)$ :

$$A_t(x) = x + t - \frac{1}{2\pi} \sin(2\pi x), \quad x \in \mathbb{R}/\mathbb{Z}.$$

# Blaschke product example, $d_0 = d_{\infty} = 2$

For any irrational  $\theta$ , there is a unique  $c_{\theta} \in \mathbb{T}$  such that the unit circle is a Herman curve of rotation number  $\theta$  for the map

$$f_{\theta}(z) = c_{\theta} z^2 \frac{z-3}{1-3z}.$$



Can we generalize this?

# Arbitrary criticalities

Fix a bounded irrational  $\theta$ , a pair  $(d_0, d_\infty)$ , and  $d := d_0 + d_\infty - 1$ .

#### Realization+Uniqueness Theorem [wrl '23]

There exists a unique degree d rational map

$$F:\hat{\mathbb{C}}\to\hat{\mathbb{C}}$$

that has the critical portrait below and a Herman quasicircle  ${f H}$  with rotation number heta.



#### Arbitrary criticalities

Fix a bounded irrational  $\theta$ , a pair  $(d_0, d_\infty)$ , and  $d := d_0 + d_\infty - 1$ .

## Realization+Uniqueness Theorem [wrl '23]

There exists a unique degree d rational map

$$F:\hat{\mathbb{C}}\to\hat{\mathbb{C}}$$

that has the critical portrait below and a Herman quasicircle  ${\bf H}$  with rotation number  ${f heta}$ .



The realization follows from a priori bounds and degeneration of Herman rings. The uniqueness follows from the absence of line fields in the Julia set.

# Example for $(d_0, d_\infty) = (3, 2)$



 $\theta = \mathrm{golden} \; \mathrm{mean}$ 

$$F_{c_*}(z) = c_* z^3 \frac{4 - z}{1 - 4z + 6z^2}$$
$$c_* \approx -1.14421 - 0.96445i$$

The map  $F_{c_*}$  naturally lives in the 1-parameter family

$$\left\{ F_c = cz^3 \, \frac{4-z}{1-4z+6z^2} \right\}_{c \in \mathbb{C}^*}.$$

#### The parameter space picture



 $\underline{\text{Conjecture:}} \ \ \text{The bifurcation locus of} \ \left\{F_c\right\}_{c\in\mathbb{C}^*} \ \text{is asymptotically self-similar at} \ c_\star.$ 

# Going beyond rational maps

From now on, fix integers  $d_0, d_\infty \geq 2$ . Denote the set

$$\mathsf{HC}_\theta = \left\{ (f, \mathbf{H}) \ : \quad \text{unicritical Herman quasicircle of } f \text{ with rotation number } \theta \text{ and criticalities } (d_0, d_\infty) \ \right\}.$$

# Going beyond rational maps

From now on, fix integers  $d_0, d_\infty \geq 2$ . Denote the set

$$\mathsf{HC}_\theta = \left\{ (f,\mathbf{H}) \ : \quad \text{unicritical Herman quasicircle of } f \text{ with rotation number } \theta \text{ and criticalities } (d_0,d_\infty) \right\}.$$

#### Rigidity Theorem [wrl '23]

For any bounded type  $\theta$  and any  $(f, \mathbf{H})$  and  $(\tilde{f}, \tilde{\mathbf{H}})$  in  $\mathsf{HC}_{\theta}$ ,

- lacksquare there is a qc conjugacy  $\phi$  between f and  $\tilde{f}$  on a nbh of  $\mathbf{H}$ ,
- $\bullet$   $\phi$  is  $C^{1+\alpha}$ -conformal on **H**.

In the special case  $\mathbf{H} = \tilde{\mathbf{H}} = S^1$ , this was proven by de Faria-de Melo '00.

# Going beyond rational maps

From now on, fix integers  $d_0, d_\infty \geq 2$ . Denote the set

$$\mathsf{HC}_\theta = \left\{ (f,\mathbf{H}) \ : \ \begin{array}{l} f \text{ is a holomorphic map and } \mathbf{H} \text{ is a} \\ unicritical Herman quasicircle of } f \text{ with} \\ \text{rotation number } \theta \text{ and criticalities } (d_0,d_\infty) \end{array} \right\}.$$

## Rigidity Theorem [wrl '23]

For any bounded type  $\theta$  and any  $(f, \mathbf{H})$  and  $(\tilde{f}, \tilde{\mathbf{H}})$  in  $\mathsf{HC}_{\theta}$ ,

- lacksquare there is a qc conjugacy  $\phi$  between f and  $\tilde{f}$  on a nbh of  $\mathbf{H}$ ,
- $\bullet$  is  $C^{1+\alpha}$ -conformal on **H**.

In the special case  $\mathbf{H} = \tilde{\mathbf{H}} = S^1$ , this was proven by de Faria-de Melo '00.

Rigidity has many consequences, e.g.

- dim(H) = universal constant;
- ②  $\dim(\mathbf{H}) = 1 \longleftrightarrow \mathbf{H}$  is  $C^1$ -smooth  $\longleftrightarrow d_0 = d_\infty$ ;
- $oldsymbol{0}$  if heta is pre-periodic,  $oldsymbol{H}$  is self-similar at the crit. pt. with universal scaling constant.

#### Renormalization

Denote  $\{c_i := f^i(c)\}_{i \ge 0} =$  the critical orbit of f.

The  $\mathbf{n^{th}}$  pre-renormalization  $p\mathcal{R}^nf$  is the pair

$$\left(f^{q_n}|_{[c_{q_{n-1}},c_0]},f^{q_{n-1}}|_{[c_0,c_{q_n}]}\right)$$

which is the first return map of f back to the interval  $[c_{q_{n-1}},c_{q_n}]\subset \mathbf{H}.$ 

The  $\mathbf{n^{th}}$  renormalization  $\mathcal{R}^n f$  is the normalized pair obtained by affine rescaling  $c_{q_{n-1}}\mapsto -1$  and  $c_0\mapsto 0$ .



#### Renormalization

Denote  $\{c_i := f^i(c)\}_{i \ge 0} =$  the critical orbit of f.

The  $\mathbf{n^{th}}$  pre-renormalization  $p\mathcal{R}^n f$  is the pair

$$\left(f^{q_n}|_{[c_{q_{n-1}},c_0]},f^{q_{n-1}}|_{[c_0,c_{q_n}]}\right)$$

which is the first return map of f back to the interval  $[c_{q_{n-1}},c_{q_n}]\subset \mathbf{H}.$ 

The  $\mathbf{n^{th}}$  renormalization  $\mathcal{R}^n f$  is the normalized pair obtained by affine rescaling  $c_{q_{n-1}}\mapsto -1$  and  $c_0\mapsto 0$ .



 ${\cal R}$  acts on rotation number as the Gauss map:

$$\operatorname{rot}(f) = \theta = [a_1, a_2, \ldots] \implies \operatorname{rot}(\mathcal{R}^n f) = G^n \theta = [a_{n+1}, a_{n+2}, \ldots].$$

# Outline of proof of Rigidity

- 1. Petersen '04:  $f|_{\mathbf{H}} \sim_{\mathsf{qs}} \tilde{f}|_{\tilde{\mathbf{H}}}$
- 2. Prove uniform butterfly structure (complex bounds) for  $p\mathcal{R}^n f$ .  $n \gg 1$ .
- 3. Construct qc conjugacy between the butterflies of  $p\mathcal{R}^n f$  and  $p\mathcal{R}^n \tilde{f}$ .
- 4. Spread this around to get a conjugacy  $\phi$  on a nbh of  ${\bf H}.$



# Outline of proof of Rigidity

- 1. Petersen '04:  $f|_{\mathbf{H}} \sim_{\mathsf{qs}} \tilde{f}|_{\tilde{\mathbf{H}}}$
- 2. Prove uniform butterfly structure (complex bounds) for  $p\mathcal{R}^n f$ .  $n \gg 1$ .
- 3. Construct qc conjugacy between the butterflies of  $p\mathcal{R}^n f$  and  $p\mathcal{R}^n \tilde{f}$ .
- 4. Spread this around to get a conjugacy  $\phi$  on a nbh of **H**.



- 5. Show that  $\bar{\partial}\phi=0$  a.e. on  $J_f=\overline{\bigcup_{k>0}f^{-k}(\mathbf{H})}$ .
- 6. Prove that points on **H** are "uniformly deep" in  $J_f$ :



As we zoom in near the critical pt,  $J_f$  converges to  $\mathbb C$  exp. fast.

#### Renormalization fixed point

Fix a periodic irrational  $\theta_*$  with some even period p.

#### Corollary

There is a unique normalized commuting pair  $\zeta_*$  with rot. no.  $\theta_*$  satisfying  $\mathcal{R}^p\zeta_*=\zeta_*$ . For any  $(f,\mathbf{H})\in\mathsf{HC}_{\theta_*}$ ,

$$\mathcal{R}^{np}f \longrightarrow \zeta_*$$
 exp. fast as  $n \to \infty$ .

#### Renormalization fixed point

Fix a periodic irrational  $\theta_*$  with some even period p.

#### Corollary

There is a unique normalized commuting pair  $\zeta_*$  with rot. no.  $\theta_*$  satisfying  $\mathcal{R}^p\zeta_*=\zeta_*$ . For any  $(f,\mathbf{H})\in\mathsf{HC}_{\theta_*}$ ,

$$\mathcal{R}^{np}f \longrightarrow \zeta_*$$
 exp. fast as  $n \to \infty$ .



#### Renormalization fixed point

Fix a periodic irrational  $\theta_*$  with some even period p.

## Corollary

There is a unique normalized commuting pair  $\zeta_*$  with rot. no.  $\theta_*$  satisfying  $\mathcal{R}^p\zeta_*=\zeta_*$ . For any  $(f,\mathbf{H})\in \mathsf{HC}_{\theta_*}$ ,

$$\mathcal{R}^{np}f \longrightarrow \zeta_*$$
 exp. fast as  $n \to \infty$ .

One can also glue the two ends of the commuting pair  $\zeta_*$  to obtain a Herman quasicircle  $f_*: \mathbf{H}_* \to \mathbf{H}_*$  fixed by a renormalization operator  $\mathcal{R}_*$ :



#### Hyperbolicity of renormalization

Fix a skinny annular nbh A of  $\mathbf{H}_*$  and a small  $\varepsilon>0$ . Define the Banach ball:

$$\mathcal{B}_{\varepsilon}(f_*) := \Big\{g \in \operatorname{Hol}(A,\mathbb{C}) \; \Big| \; g \text{ has a unique critical point and } \sup_{z \in A} |g(z) - f(z)| < \varepsilon \Big\}.$$

## Hyperbolicity of renormalization

Fix a skinny annular nbh A of  $\mathbf{H}_*$  and a small  $\varepsilon > 0$ . Define the Banach ball:

$$\mathcal{B}_{\varepsilon}(f_*) := \Big\{g \in \operatorname{Hol}(A,\mathbb{C}) \; \Big| \; g \text{ has a unique critical point and } \sup_{z \in A} |g(z) - f(z)| < \varepsilon \Big\}.$$

## Hyperbolicity Theorem [wrl '24]

 $\mathcal{R}_*$  can be naturally extended to a compact analytic operator on  $\mathcal{B}_{\varepsilon}(f_*)$  such that:

- $f_*$  is the unique fixed point of  $\mathcal{R}_*$ .

In the circle case  $(d_0=d_\infty)$ , the real version of this was proven by Yampolsky '03.

#### Key ingredient: Corona structure

A **corona** is a holomorphic map  $f:U\to V$  between nested annuli with radial arcs  $\gamma_0\subset U$  and  $\gamma_1\subset V$  such that  $f:U\setminus\gamma_0\to V\setminus\gamma_1$  is a covering map branched at a unique crit. pt.



A corona  $f:(U,\gamma_0) o (V,\gamma_1)$  with criticalities  $(d_0,d_\infty)=(2,3)$ 

#### Corona renormalization operator

Every unicritical Herman curve can be renormalized to a corona:



#### Corona renormalization operator

Every unicritical Herman curve can be renormalized to a corona:



 $\mathcal{R}_{cor}$  naturally extends to an analytic operator on a Banach ball  $\mathcal{B}_{\varepsilon}(f)$ .

Since  $f_*: \mathbf{H}_* \to \mathbf{H}_*$  can be renormalized to itself,  $f_*$  admits a corona structure. We extend  $\mathcal{R}_*: f_* \mapsto f_*$  to an analytic renormalization operator on  $\mathcal{B}_{\varepsilon}(f_*)$ .

## Most difficult part of the proof

With this corona framework, together with various soft methods<sup>1</sup>, most of the hyperbolicity theorem can be proven.

Remaining obstacle:  $\dim(\mathcal{W}_{loc}^u) \leq 1$ ?

 $<sup>^{1} \\ \</sup>text{holomorphic motions, renormalization tiling, Small Orbits Theorem, exponential convergence, etc}$ 

## Most difficult part of the proof

With this corona framework, together with various soft methods<sup>1</sup>, most of the hyperbolicity theorem can be proven.

Remaining obstacle:  $\dim(\mathcal{W}_{loc}^u) \leq 1$ ?

 $\underline{\text{Solution:}} \ \mathcal{W}^u_{\text{loc}} = \text{a parameter space of transcendental maps of unknown dimension.}$ 

 $<sup>^{1}</sup>$ holomorphic motions, renormalization tiling, Small Orbits Theorem, exponential convergence, etc

## Transcendental dynamics

For the renormalization fixed point  $f_*$ ,

rescalings of 
$$\left\{f_*^{q_p(m+n)}\right\}_{m\geq -n} \xrightarrow{m\to\infty} \begin{array}{c} \text{bi-infinite tower of commuting $\sigma$-proper maps} \\ \left\{\mathbf{F}_*^{Q_{pn}}: \mathsf{Dom}(\mathbf{F}_*^{Q_{pn}})\to \mathbb{C}\right\}_{n\in\mathbb{Z}} \end{array}$$

We can normalize this process so that  $\boldsymbol{0}$  is the critical value.

$$\left\{\mathbf{F}_*^{Q_n}\right\}_{n\in\mathbb{Z}} \text{ generates a semigroup of transcendental maps } \mathbf{F}_* = (\mathbf{F}_*^P)_{P\in\mathbf{T}}.$$

## Transcendental dynamics

For the renormalization fixed point  $f_*$ ,

rescalings of 
$$\left\{f_*^{q_p(m+n)}\right\}_{m\geq -n} \xrightarrow{m\to\infty} \begin{array}{c} \text{bi-infinite tower of commuting $\sigma$-proper maps} \\ \left\{\mathbf{F}_*^{Q_pn}: \mathsf{Dom}(\mathbf{F}_*^{Q_pn})\to \mathbb{C}\right\}_{n\in\mathbb{Z}} \end{array}$$

We can normalize this process so that 0 is the critical value.

$$\left\{\mathbf{F}_*^{Qn}\right\}_{n\in\mathbb{Z}} \text{ generates a semigroup of transcendental maps } \mathbf{F}_* = (\mathbf{F}_*^P)_{P\in\mathbf{T}}.$$

For  $f \in \mathcal{W}^u_{\mathrm{loc}}$ ,

$$\left\{\mathcal{R}^{-n}f\right\}_{n\leq 0}\xrightarrow{\text{appropriate}\\ \text{rescaling}}\xrightarrow{\text{backward tower of commuting $\sigma$-proper maps}} \left\{\mathbf{F}^{Q_{pn}}: \mathsf{Dom}(\mathbf{F}^{Q_{pn}}) \to \mathbb{C}\right\}_{n\leq 0}$$

This still forms a semigroup of transcendental maps  $\mathbf{F}=(\mathbf{F}^P)_{P\in\mathbf{T}}.$ 

# Dynamical sets for cascades

For  $f \in \mathcal{W}^u$ , define...

• Fatou set:

$$\mathfrak{F}(\mathbf{F}) = \text{points of normality of } \left(\mathbf{F}^P\right)_{P \in \mathbf{T}}$$

Julia set:

$$\mathfrak{J}(F)=\mathbb{C}\backslash\mathfrak{F}(F)$$

postcritical set:

$$\mathfrak{P}(\mathbf{F}) = \text{ closure of the critical orbit } \left(\mathbf{F}^P(0)\right)_{P \in \mathbf{T}}$$

• finite-time escaping set:

$$\mathbf{I}_{<\infty}(\mathbf{F}) = \bigcup_{P \in \mathbf{T}} \mathbb{C} \backslash \mathsf{Dom} \big( \mathbf{F}^P \big)$$

• infinite-time escaping set:

$$\mathbf{I}_{\infty}(\mathbf{F}) = \text{ points } x \text{ where } \mathbf{F}^P(x) o \infty \text{ as } P o \infty$$

• full escaping set:

$$\mathbf{I}(\mathbf{F}) = \mathbf{I}_{<\infty}(\mathbf{F}) \cup \mathbf{I}_{\infty}(\mathbf{F}).$$

# Approximate dynamical picture of $\mathbf{F}_{\ast}$



In blue:  $\label{eq:some_some} \mbox{Some rays in } I_{<\infty}(F_*)$  landing at critical points of  $F_*$ 

 $\mathfrak{P}(\mathbf{F}_*)$ 

#### $\mathcal{W}^u$ is one-dimensional

#### Rigidity Theorem for $\mathcal{W}^u$

For  $f \in \mathcal{W}^n_{\mathsf{loc}}$ ,

- 1.  $\mathbf{I}(F)$  supports no invariant line field & moves conformally away from pre-critical pts.
- 2. If F is hyperbolic, then  $\mathfrak{J}(F)$  also supports no invariant line field.

At last,

$$\exists$$
 hyperbolic component  $O \subset \mathcal{W}^u_{\mathrm{loc}}$  near  $f_*$   $\xrightarrow{\mathrm{above}}$   $\dim(O) \leq \#$  free critical orbits  $=1$ .

# Structure of the local conjugacy class

#### Corollary

Consider any pre-periodic irrational  $\theta'$  and any  $(f, \mathbf{H}) \in \mathsf{HC}_{\theta'}$ . The local conjugacy class

$$\Big\{g\in\mathcal{B}_arepsilon(f)\ ig|\ g$$
 has a Herman quasicircle  $\mathbf{H}_g$  with rot. no.  $heta'\Big\}$ 

is an analytic submanifold of  $\mathcal{B}_{\varepsilon}(f)$  of codim  $\leq 1$  on which  $\mathbf{H}_g$  moves holomorphically.

## Structure of the local conjugacy class

#### Corollary

Consider any pre-periodic irrational  $\theta'$  and any  $(f,\mathbf{H})\in\mathsf{HC}_{\theta'}$ . The local conjugacy class

$$\Big\{g\in\mathcal{B}_{arepsilon}(f)\ ig|\ g$$
 has a Herman quasicircle  $\mathbf{H}_g$  with rot. no.  $heta'\Big\}$ 

is an analytic submanifold of  $\mathcal{B}_{\varepsilon}(f)$  of codim  $\leq 1$  on which  $\mathbf{H}_g$  moves holomorphically.



# Development of renormalization theory in complex dynamics

| real renorm.    | $\infty$ -renorm   | critical         |  |
|-----------------|--------------------|------------------|--|
| horseshoe       | unimodal maps      | circle maps      |  |
|                 | Sullivan,          | de Faria,        |  |
| beau bounds     | Lyubich-Yampolsky, | Yampolsky,       |  |
|                 | Levin-van Strien   | de Faria-de Melo |  |
| exp contraction | McMullen,          | de Faria-de Melo |  |
|                 | Avila-Lyubich      |                  |  |
| hyperbolicity   | Lyubich            | Yampolsky        |  |
|                 | Avila-Lyubich      |                  |  |

| renorm.                 | ∞-renorm      | Siegel disks           | Herman |  |
|-------------------------|---------------|------------------------|--------|--|
| fixed point             | PL maps       | Siegei disks           | curves |  |
| complex                 | Kahn,         | McMullen,              | Lim    |  |
| a priori bounds         | Dudko-Lyubich | Avila-Lyubich          | Lilli  |  |
| $C^{1+lpha}$ -rigidity/ | McMullen,     | McMullen,              | Lim    |  |
| exp contraction         | Lyubich       | Avila-Lyubich          | LIIII  |  |
| hyperbolicity           | Lyubich       | Gaidashev-Yampolsky,   | Lim    |  |
| пурегропстту            |               | Dudko-Lyubich-Selinger |        |  |

# The parameter picture

| features                            | $\infty$ -renorm. PL maps | Siegel disks             | Herman curves                                                                                                                |
|-------------------------------------|---------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------|
| nice family                         | $z^d + c$                 | $z^d + c$                | $-c \frac{\displaystyle\sum_{j=d_0}^d \binom{d}{j} \cdot (-z)^j}{\displaystyle\sum_{j=0}^{d_0-1} \binom{d}{j} \cdot (-z)^j}$ |
| $\mathcal{R}$ -invariant lamination | hybrid classes            | level sets of multiplier | ?                                                                                                                            |
| structural instability              | yes                       | yes                      | partially known                                                                                                              |
| parameter self-similarity           | complete                  | partially known          | ?                                                                                                                            |

# Thank you!