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Diophantine assumption

Fix an irrational θ ∈ (0, 1) and write

θ = [a1, a2, a3, . . .] :=
1

a1 +
1

a2 +
1

a3+...

.

θ is called
bounded if sup an <∞.
periodic with period p if an+p = an for all n.

E.g. golden mean = [1, 1, 1, . . .] =
√
5−1
2

The nth rational approximation of θ is
pn
qn

= [a1, . . . , an].
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Rotation curves

An invariant Jordan curve H ⊂ Ĉ of a holomorphic map f is
a rotation curve if f |H is conjugate to an irrational rotation Rθ : T→ T;
a Herman curve if additionally it isn’t contained in the closure of a rotation domain.

Trichotomy: When a rotation curve H has bounded rotation number θ, there are 3 cases:
a. H = an analytic curve inside a rotation domain,
b. H = the boundary of a rotation domain containing a critical point of f ,
h. H = a Herman curve containing inner and outer critical points of f .

4 / 41



Rotation curves

An invariant Jordan curve H ⊂ Ĉ of a holomorphic map f is
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Motivation

Siegel disks and Herman rings have been pretty well studied by many many people.
On the other hand, not much is known about Herman curves.

Key questions
1 Regularity and smoothness of Herman curves?
2 Rigidity properties?
3 Regularity of conjugacy classes?
4 Structural instability?

From now on, we will consider a Herman curve f : H→ H with a single critical point c.
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Inner & outer criticalities

Denote

d0 = inner criticality of c,
d∞ = outer criticality of c.

The total local degree of the critical point c is d0 + d∞ − 1.

Example of
(d0, d∞) = (2, 3)

H

f

Critical circle maps (when H = S1) automatically have d0 = d∞.
E.g. The Arnold family, (d0, d∞) = (2, 2):

At(x) = x+ t− 1

2π
sin(2πx), x ∈ R/Z.
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Blaschke product example, d0 = d∞ = 2

For any irrational θ, there is a unique cθ ∈ T such that the unit circle is a Herman curve
of rotation number θ for the map

fθ(z) = cθz
2 z − 3

1− 3z
.

Can we generalize this?
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Arbitrary criticalities

Fix a bounded irrational θ, a pair (d0, d∞), and d := d0 + d∞ − 1.

Realization+Uniqueness Theorem [wrl ’23]
There exists a unique degree d rational map

F : Ĉ→ Ĉ

that has the critical portrait below and a Herman quasicircle H with rotation number θ.

•
0

•
1

•
∞

•
d0 : 1 d : 1 d∞ : 1

H

The realization follows from a priori bounds and degeneration of Herman rings.
The uniqueness follows from the absence of line fields in the Julia set.
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Example for (d0, d∞) = (3, 2)

θ = golden mean

Fc∗ (z) = c∗z
3 4 − z

1 − 4z + 6z2

c∗ ≈ −1.14421 − 0.96445i

The map Fc∗ naturally lives in the 1-parameter family{
Fc = cz3

4− z

1− 4z + 6z2

}
c∈C∗

.
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The parameter space picture

Conjecture: The bifurcation locus of {Fc}c∈C∗ is asymptotically self-similar at c?.
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Going beyond rational maps

From now on, fix integers d0, d∞ ≥ 2. Denote the set

HCθ =

(f,H) :
f is a holomorphic map and H is a
unicritical Herman quasicircle of f with
rotation number θ and criticalities (d0, d∞)

 .

Rigidity Theorem [wrl ’23]

For any bounded type θ and any (f,H) and (f̃ , H̃) in HCθ,
1 there is a qc conjugacy φ between f and f̃ on a nbh of H,
2 φ is C1+α-conformal on H.

In the special case H = H̃ = S1, this was proven by de Faria-de Melo ’00.

Rigidity has many consequences, e.g.
1 dim(H) = universal constant;
2 dim(H) = 1←→ H is C1-smooth ←→ d0 = d∞;
3 if θ is pre-periodic, H is self-similar at the crit. pt. with universal scaling constant.
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Renormalization

Denote {ci := f i(c)}i≥0 = the critical orbit of f .

The nth pre-renormalization pRnf is the pair(
fqn |[cqn−1

,c0], f
qn−1 |[c0,cqn ]

)
which is the first return map of f back to the
interval [cqn−1 , cqn ] ⊂ H.

The nth renormalization Rnf is the
normalized pair obtained by affine rescaling
cqn−1 7→ −1 and c0 7→ 0.

fqnfqn−1

c0 cqncqn−1

cqn+qn−1
cqncqn−1

R acts on rotation number as the Gauss map:

rot(f) = θ = [a1, a2, . . .] =⇒ rot(Rnf) = Gnθ = [an+1, an+2, . . .].
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Outline of proof of Rigidity

1. Petersen ’04: f |H ∼qs f̃ |H̃
2. Prove uniform butterfly structure
1. (complex bounds) for pRnf . n� 1.
3. Construct qc conjugacy between the
2. butterflies of pRnf and pRnf̃ .
4. Spread this around to get a conjugacy φ
3. on a nbh of H.

fqn−1

fqn+qn−1

fqn

5. Show that ∂̄φ = 0 a.e. on Jf = ∪k≥0f−k(H).
6. Prove that points on H are “uniformly deep“ in Jf :

As we zoom in near the critical pt, Jf converges to C exp. fast.
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Renormalization fixed point

Fix a periodic irrational θ∗ with some even period p.

Corollary
There is a unique normalized commuting pair ζ∗ with rot. no. θ∗ satisfying Rpζ∗ = ζ∗.
For any (f,H) ∈ HCθ∗ ,

Rnpf −→ ζ∗ exp. fast as n→∞.
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Renormalization fixed point

Fix a periodic irrational θ∗ with some even period p.

Corollary
There is a unique normalized commuting pair ζ∗ with rot. no. θ∗ satisfying Rpζ∗ = ζ∗.
For any (f,H) ∈ HCθ∗ ,

Rnpf −→ ζ∗ exp. fast as n→∞.

One can also glue the two ends of the commuting pair ζ∗ to obtain a Herman quasicircle
f∗ : H∗ → H∗ fixed by a renormalization operator R∗:

f
qp
∗

f
qp−1
∗

f∗

H∗

R∗f∗ = f∗

=⇒
conformally

glue the
vertical
sides
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Hyperbolicity of renormalization

Fix a skinny annular nbh A of H∗ and a small ε > 0. Define the Banach ball:

Bε(f∗) :=
{
g ∈ Hol(A,C)

∣∣∣ g has a unique critical point and sup
z∈A
|g(z)− f(z)| < ε

}
.

Hyperbolicity Theorem [wrl ’24]
R∗ can be naturally extended to a compact analytic operator on Bε(f∗) such that:

1 f∗ is the unique fixed point of R∗.
2 f∗ is hyperbolic with a single unstable direction.
3 Ws

loc(f∗) = {g ∈ Bε(f∗) | g has a Herman quasicircle with rot. no. θ∗}.

In the circle case (d0 = d∞), the real version of this was proven by Yampolsky ’03.
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Key ingredient: Corona structure

A corona is a holomorphic map f : U → V between nested annuli with radial arcs γ0 ⊂ U
and γ1 ⊂ V such that f : U\γ0 → V \γ1 is a covering map branched at a unique crit. pt.

U

V

γ0
2

γ0
1

γ∞
1

γ∞
2

γ∞
3

γ∞
4

γ0

γ1

•c.p.

f

A corona f : (U, γ0) → (V, γ1) with criticalities (d0, d∞) = (2, 3)
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Corona renormalization operator

Every unicritical Herman curve can be renormalized to a corona:

f

H

Rcorf

fqn

fqn−1

=⇒
conformally

glue the
vertical sides

Rcor naturally extends to an analytic operator on a Banach ball Bε(f).

Since f∗ : H∗ → H∗ can be renormalized to itself, f∗ admits a corona structure.
We extend R∗ : f∗ 7→ f∗ to an analytic renormalization operator on Bε(f∗).
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Most difficult part of the proof

With this corona framework, together with various soft methods1,
most of the hyperbolicity theorem can be proven.

Remaining obstacle: dim(Wu
loc) ≤ 1?

Solution: Wu
loc = a parameter space of transcendental maps of unknown dimension.

1holomorphic motions, renormalization tiling, Small Orbits Theorem, exponential convergence, etc
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Transcendental dynamics

For the renormalization fixed point f∗,

rescalings of{
f
qp(m+n)
∗

}
m≥−n

−−−−−−−→
m→∞

bi-infinite tower of commuting σ-proper maps{
FQpn
∗ : Dom(FQpn

∗ )→ C
}

n∈Z

We can normalize this process so that 0 is the critical value.{
FQn
∗

}
n∈Z

generates a semigroup of transcendental maps F∗ = (FP
∗ )P∈T.

For f ∈ Wu
loc,{

R−nf
}

n≤0

appropriate−−−−−−−−−→
rescaling

backward tower of commuting σ-proper maps{
FQpn : Dom(FQpn)→ C

}
n≤0

This still forms a semigroup of transcendental maps F = (FP )P∈T.
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Dynamical sets for cascades

For f ∈ Wu, define...
Fatou set:

F(F) = points of normality of
(
FP )

P∈T

Julia set:
J(F) = C\F(F)

postcritical set:

P(F) = closure of the critical orbit
(
FP (0)

)
P∈T

finite-time escaping set:

I<∞(F) =
⋃
P∈T

C\Dom
(
FP )

infinite-time escaping set:

I∞(F) = points x where FP (x)→∞ as P →∞

full escaping set:
I(F) = I<∞(F) ∪ I∞(F).
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Approximate dynamical picture of F∗

In blue:
Some rays in I<∞(F∗)

landing at critical points of F∗

P(F∗)
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Wu is one-dimensional

Rigidity Theorem for Wu

For f ∈ Wn
loc,

1. I(F) supports no invariant line field & moves conformally away from pre-critical pts.
2. If F is hyperbolic, then J(F) also supports no invariant line field.

At last,

∃ hyperbolic component
O ⊂ Wu

loc near f∗
theorem=========⇒
above

dim(O) ≤ # free critical orbits = 1.
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Structure of the local conjugacy class

Corollary
Consider any pre-periodic irrational θ′ and any (f,H) ∈ HCθ′ . The local conjugacy class{

g ∈ Bε(f)
∣∣ g has a Herman quasicircle Hg with rot. no. θ′

}
is an analytic submanifold of Bε(f) of codim ≤ 1 on which Hg moves holomorphically.
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Development of renormalization theory in complex dynamics

real renorm. ∞-renorm critical
horseshoe unimodal maps circle maps

Sullivan, de Faria,
Lyubich-Yampolsky, Yampolsky,beau bounds

Levin-van Strien de Faria-de Melo
McMullen,exp contraction

Avila-Lyubich
de Faria-de Melo

Lyubichhyperbolicity
Avila-Lyubich

Yampolsky

renorm. ∞-renorm Herman
fixed point PL maps

Siegel disks
curves

complex Kahn, McMullen,
a priori bounds Dudko-Lyubich Avila-Lyubich

Lim

C1+α-rigidity/ McMullen, McMullen,
exp contraction Lyubich Avila-Lyubich

Lim

Gaidashev-Yampolsky,hyperbolicity Lyubich
Dudko-Lyubich-Selinger

Lim
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The parameter picture

features ∞-renorm. PL maps Siegel disks Herman curves

nice family zd + c zd + c −c

d∑
j=d0

(d
j

)
· (−z)j

d0−1∑
j=0

(d
j

)
· (−z)j

R-invariant hybrid classes level sets of multiplier ?lamination
structural yes yes partially knowninstability
parameter complete partially known ?self-similarity
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Thank you!
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