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Diophantine assumption

Fix an irrational 6 € (0,1) and write

0 = a1, a2,as3,...] = —————

0 is called
@ bounded if supa, < co.
@ periodic with period p if anyp = an for all n.

E.g. golden mean =[1,1,1,...] = %
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Diophantine assumption

Fix an irrational 6 € (0,1) and write

0 = [a1,a2,as,...] ;== —1

0 is called
@ bounded if supa, < co.
@ periodic with period p if anyp = an for all n.

E.g. golden mean =[1,1,1,...] = %

The n'" rational approximation of @ is

Pn

= |a1,...,0n].
o= )
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Rotation curves

An invariant Jordan curve H C C of a holomorphic map f is
@ a rotation curve if f|g is conjugate to an irrational rotation Ry : T — T;

@ a Herman curve if additionally it isn't contained in the closure of a rotation domain.
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Rotation curves

An invariant Jordan curve H C C of a holomorphic map f is
@ a rotation curve if f|g is conjugate to an irrational rotation Ry : T — T;

@ a Herman curve if additionally it isn't contained in the closure of a rotation domain.

Trichotomy: When a rotation curve H has bounded rotation number 6, there are 3 cases:
a. H = an analytic curve inside a rotation domain,
b. H = the boundary of a rotation domain containing a critical point of f,

h. H = a Herman curve containing inner and outer critical points of f.
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Motivation

Siegel disks and Herman rings have been pretty well studied by many many people.
On the other hand, not much is known about Herman curves.

Key questions
© Regularity and smoothness of Herman curves?
@ Rigidity properties?
© Regularity of conjugacy classes?
@ Structural instability?

From now on, we will consider a Herman curve f : H — H with a single critical point c.
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Inner & outer criticalities

Denote
do = inner criticality of ¢,
deo = outer criticality of c.

The total local degree of the critical point cis do + doo — 1.

Example of
(do, dOO) = (2, 3)
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Inner & outer criticalities

Denote
do = inner criticality of ¢,
deo = outer criticality of c.

The total local degree of the critical point cis do + doo — 1.

Example of
(do, dOO) = (2, 3)

Critical circle maps (when H = S') automatically have do = do.
E.g. The Arnold family, (do,ds) = (2,2):

Ai(z) =x+t— 2i sin(2rz), x € R/Z.
T
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Blaschke product example, dy = doo = 2

For any irrational €, there is a unique co € T such that the unit circle is a Herman curve
of rotation number 0 for the map

Can we generalize this?

10/41



Arbitrary criticalities

Fix a bounded irrational 0, a pair (do, dos), and d := do + do

Realization+Uniqueness Theorem [wr| 23]
There exists a unique degree d rational map

F:C=>C

-1

that has the critical portrait below and a Herman quasicircle H with rotation number 6.

'\dzl

=

doo : 1
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Arbitrary criticalities

Fix a bounded irrational 0, a pair (do,dos), and d :=do + doo — 1.

Realization+Uniqueness Theorem [wr| 23]
There exists a unique degree d rational map
F:C=C

that has the critical portrait below and a Herman quasicircle H with rotation number 6.

=

The realization follows from a priori bounds and degeneration of Herman rings.
The uniqueness follows from the absence of line fields in the Julia set.
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6 = golden mean

4 —
F., (2) = c.2° L
1 —4z 4+ 622

cy &= —1.14421 — 0.964457

The map F., naturally lives in the 1-parameter family

4—z
FC:0237} .
{ 1—4z 4622 ceCr
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The parameter space picture

0,962
0,064
0,966

-0.068

101

115 -1.148 -1.148

1142 114

Conjecture: The bifurcation locus of {Fc} ¢« is asymptotically self-similar at c,.
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Going beyond rational maps

From now on, fix integers do, ds > 2. Denote the set
f is a holomorphic map and H is a

HCyp = ¢ (f,H) : unicritical Herman quasicircle of f with
rotation number 6 and criticalities (do, doo)
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Going beyond rational maps

From now on, fix integers do, ds > 2. Denote the set

f is a holomorphic map and H is a
HCyp = ¢ (f,H) : unicritical Herman quasicircle of f with
rotation number 6 and criticalities (do, doo)

Rigidity Theorem [wrl| '23]

For any bounded type 6 and any (f,H) and (f, I:I) in HCy,
© there is a qc conjugacy ¢ between f and f on a nbh of H,
Q@ ¢ is C'T*-conformal on H.

In the special case H = H= 5", this was proven by de Faria-de Melo '00.
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Going beyond rational maps

From now on, fix integers do, ds > 2. Denote the set

f is a holomorphic map and H is a
HCyp = ¢ (f,H) : unicritical Herman quasicircle of f with
rotation number 6 and criticalities (do, doo)

Rigidity Theorem [wrl| '23]

For any bounded type 6 and any (f,H) and (f, I:I) in HCy,
© there is a qc conjugacy ¢ between f and f on a nbh of H,
Q@ ¢ is C'T*-conformal on H.

In the special case H = H= 5", this was proven by de Faria-de Melo '00.

Rigidity has many consequences, e.g.
@ dim(H) = universal constant;
Q@ dim(H) = 1 +— H is C'-smooth +— do = doo;

@ if 0 is pre-periodic, H is self-similar at the crit. pt. with universal scaling constant.
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Renormalization

Denote {c; := f%(c)}i>0 = the critical orbit of f.

The n'" pre-renormalization pR™f is the pair

(fqn |[an,1 scols it |[CO»an]) Can—1 0 fan
which is the first return map of f back to the
interval [cq,,_,,¢q,] C H. Sl NS

The n*" renormalization R™f is the
normalized pair obtained by affine rescaling
Cq,_1 +> —1 and co — 0. Can—1

18/41



Renormalization

Denote {c; := f%(c)}i>0 = the critical orbit of f.

The n'" pre-renormalization pR™f is the pair

(an |[an71 ,cols f‘In—l |[co,cqn]) Cqp_1 co an

which is the first return map of f back to the
interval [cq,,_,,¢q,] C H. Sl NS

The n*" renormalization R™f is the
normalized pair obtained by affine rescaling

Cqn+an— Can
Cqn_, — —1 and co — 0. Can—1 !
R acts on rotation number as the Gauss map:
rot(f) =0 =[a1,a2,...] = rot(R"f)=G"0=[ant1,an+2,-..]
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Outline of proof of Rigidity

1. Petersen '04: flu ~gs f|ﬁ fantan—1
an

2. Prove uniform butterfly structure fan—1
(complex bounds) for pR™f. n>> 1.

3. Construct qc conjugacy between the
butterflies of pR" f and pR" f. B 7 L

4. Spread this around to get a conjugacy ¢
on a nbh of H.
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Outline of proof of Rigidity

1. Petersen '04: flu ~gs f|ﬁ fantan—1
fan

2. Prove uniform butterfly structure fan—1
(complex bounds) for pR™f. n>> 1.

3. Construct qc conjugacy between the
butterflies of pR" f and pR" f.

4. Spread this around to get a conjugacy ¢
on a nbh of H.

5. Show that ¢ = 0 a.e. on J; = Up>of—*(H).

6. Prove that points on H are “uniformly deep"” in Jy:

As we zoom in near the critical pt, Jy converges to C exp. fast.
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Renormalization fixed point
Fix a periodic irrational . with some even period p.

Corollary

There is a unique normalized commuting pair (. with rot. no. 6, satisfying R?(, = (..
For any (f,H) € HC,,,

R™f — (.« exp. fast asn — oo.
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Renormalization fixed point
Fix a periodic irrational . with some even period p.

Corollary

There is a unique normalized commuting pair (. with rot. no. 6, satisfying R?(, = (..
For any (f,H) € HC,,,

R"™f — (. exp. fast asn — oo.

7<N\

I
| | RP gt: gc
I I

R’ 5
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Renormalization fixed point

Fix a periodic irrational . with some even period p.

Corollary

There is a unique normalized commuting pair (. with rot. no. 6, satisfying R?(, = (..
For any (f,H) € HCy,,

R™f — (. exp. fast asn — oo.

One can also glue the two ends of the commuting pair (. to obtain a Herman quasicircle
f« : H. — H, fixed by a renormalization operator R.:

dp—1
*
H*
—
conformally
glue the
P vertical
P sides
f* R*f* = f*
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Hyperbolicity of renormalization

Fix a skinny annular nbh A of H. and a small ¢ > 0. Define the Banach ball:

Be(f«) = {g € Hol(A, C) | g has a unique critical point and sup |g(z) — f(2)] < s}.
z€A
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Hyperbolicity of renormalization

Fix a skinny annular nbh A of H. and a small ¢ > 0. Define the Banach ball:

Be(f«) = {g € Hol(4,C) ‘ g has a unique critical point and sup |g(z) — f(2)] < s}.
z€A

Hyperbolicity Theorem [wrl "24]

R. can be naturally extended to a compact analytic operator on B.(f«) such that:
@ f. is the unique fixed point of R..
@ f. is hyperbolic with a single unstable direction.
Q@ Wi (f«) = {g € B-(f+) | g has a Herman quasicircle with rot. no. 6.}.

In the circle case (dop = d ), the real version of this was proven by Yampolsky '03.
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Key ingredient: Corona structure

A corona is a holomorphic map f : U — V between nested annuli with radial arcs v C U
and 71 C V such that f: U\ — V\71 is a covering map branched at a unique crit. pt.

A corona f : (U,v0) — (V,~1) with criticalities (do, deo) = (2, 3)
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Corona renormalization operator

Every unicritical Herman curve can be renormalized to a corona:

far

C

H €

> r

¢
conformally
glue the \\j
fqnfl vertical sides
f RCDTf
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Corona renormalization operator

Every unicritical Herman curve can be renormalized to a corona:
f‘Zn
— T
H == ¢
— o
&
conformally
glue the
fin-1 vertical sides
f Rcorf
Reor naturally extends to an analytic operator on a Banach ball B.(f).
Since f. : Hy — H. can be renormalized to itself, f. admits a corona structure.

We extend R. : f« — f. to an analytic renormalization operator on B (f).
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Most difficult part of the proof

With this corona framework, together with various soft methods®,
most of the hyperbolicity theorem can be proven.

Remaining obstacle: dim(Wps.) < 1?7

1holomorphic motions, renormalization tiling, Small Orbits Theorem, exponential convergence, etc
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Most difficult part of the proof

With this corona framework, together with various soft methods®,
most of the hyperbolicity theorem can be proven.

Remaining obstacle: dim(Wps.) < 1?7

Solution: W.. = a parameter space of transcendental maps of unknown dimension.

1holomorphic motions, renormalization tiling, Small Orbits Theorem, exponential convergence, etc
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Transcendental dynamics

For the renormalization fixed point f.,

rescalings of bi-infinite tower of commuting o-proper maps

{ffp(m*m} L T ' {ng":Dom(F?"")%C} ]
m=>—n ne

We can normalize this process so that 0 is the critical value.

{an} generates a semigroup of transcendental maps F. = (F7)per.
nez
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Transcendental dynamics

For the renormalization fixed point f.,

rescalings of bi-infinite tower of commuting o-proper maps

{ffp(m*m} L T ' {ng":Dom(F?"")%C} ]
m=>—n ne

We can normalize this process so that 0 is the critical value.
{an} generates a semigroup of transcendental maps F. = (F7)per.
nez

For f € W|7;Cv
{’anf} appropriate backward tower of commuting o-proper maps
_
n<0 rescaling {FQP" : Dom(FQP") — (C} <

This still forms a semigroup of transcendental maps F = (F7)per.
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Dynamical sets for cascades

For f € W", define...

e Fatou set:

§(F) = points of normality of (FP)PET

@ Julia set:

J(F) = C\3(F)

postcritical set:

PB(F) = closure of the critical orbit (FP (O))PGT

finite-time escaping set:

I.oo(F) = | J C\Dom(F”)

PeT

infinite-time escaping set:

I..(F) = points = where F¥'(z) — 0o as P — oo

full escaping set:
I(F) = I<oo(F) UL (F).
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Approximate dynamical picture of F,

afd In blue:
B Some rays in Tcoo(Fy)

landing at critical points of F.
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WY is one-dimensional

Rigidity Theorem for W*

For f € Wi,
1. I(F) supports no invariant line field & moves conformally away from pre-critical pts.
2. If F is hyperbolic, then J(F) also supports no invariant line field.

At last,

3 hyperboli t rem . . .
yOpg ;Vgc c:e?f;ren % dim(O) < # free critical orbits = 1.
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Structure of the local conjugacy class

Corollary

Consider any pre-periodic irrational 0’ and any (f,H) € HCy,. The local conjugacy class
{g € B-(f) |g has a Herman quasicircle Hy with rot. no. 0'}

is an analytic submanifold of B.(f) of codim < 1 on which H, moves holomorphically.
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Structure of the local conjugacy class

Corollary

Consider any pre-periodic irrational 0’ and any (f,H) € HCy,. The local conjugacy class
{g € B-(f) |g has a Herman quasicircle Hy with rot. no. 0'}

is an analytic submanifold of B.(f) of codim < 1 on which H, moves holomorphically.

wu
Reor A K‘?R,
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Development of renormalization theory in complex dynamics

real renorm. oo-renorm critical
horseshoe unimodal maps circle maps
Sullivan, de Faria,
beau bounds Lyubich-Yampolsky, Yampolsky,
Levin-van Strien de Faria-de Melo
McMull
exp contraction .C n er:n, de Faria-de Melo
Avila-Lyubich
Lyubich
hyperbolicit Yampolsk
P y Avila-Lyubich POISIY
.renorn"t. oo-renorm Siegel disks Herman
fixed point PL maps curves
complex Kahn, McMullen, Lim
a priori bounds | Dudko-Lyubich Avila-Lyubich
C' o rigidity / McMullen, McMullen, e
exp contraction Lyubich Avila-Lyubich
Gaidashev-Y. Isky,
hyperbolicity Lyubich SleeRE e Lim
Dudko-Lyubich-Selinger
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The parameter picture

features

oco-renorm. PL maps Siegel disks Herman curves
d
d
> (5) (=2
. . d d j=do J
nice family 2%+ c 2% +ec o
1 /d
> () 2
=0 7
R—ln.varl.amt hybrid classes level sets of multiplier ?
lamination
structural es es artially known
instability y 4 P y
parameter complete partially known ?

self-similarity

40/41



Thank you!
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