A priori bounds via totally degenerate regime

Willie Rush Lim

Brown University

22 Aug 2025

Quadratic polynomials

Every quadratic polynomial over ${\mathbb C}$ is affinely conjugate to a unique map of the form

$$f_c(z) = z^2 + c.$$

• Filled Julia (FJ) set of f_c :

$$K(f_c) = \{ z \in \mathbb{C} : f_c^n(z) \not\to \infty \text{ as } n \to \infty \}$$

• Mandelbrot set:

$$\mathbb{M} = \{c \in \mathbb{C} : 0 \in K(f_c)\}\$$

= $\{c \in \mathbb{C} : K(f_c) \text{ is connected}\}$

The Mandelbrot set

MLC

MLC Conjecture: \mathbb{M} is locally connected.

QL maps

A quadratic-like (QL) map is a holomorphic double branched covering map

$$f:U\to V$$

between nested disks $U \subseteq V$ such that its FJ set

$$\mathcal{K}(f) := \{z \ : \ f^n(z) \in \textit{U} \ \text{for all} \ n \geq 1\},$$

is connected.

Straightening

Theorem (Douady-Hubbard '84)

For every QL map $f: U \rightarrow V$, there exists

- a unique c = c(f) in \mathbb{M} and
- ullet a quasiconformal map $\phi:U o\mathbb{C}$ with $ar\partial\phi=0$ on K(f)

such that
$$\phi \circ f = f_c \circ \phi.$$

This theorem defines the straightening map

$$S: \{QL \text{ maps}\} \to \mathbb{M}, \quad f \mapsto c(f).$$

Renormalization

A quadratic(-like) map f is called **renormalizable** with period $p \ge 2$ if there exist disks $A \in B$ containing the critical point of f such that

$$f^p:A\to B$$

is a QL map called a (pre)-renormalization of f.

Renormalization

A quadratic(-like) map f is called **renormalizable** with period $p \ge 2$ if there exist disks $A \in B$ containing the critical point of f such that

$$f^p:A\to B$$

is a QL map called a (pre)-renormalization of f.

Denote:

- K(0) = FJ set of $f^p : A \to B$,
- $K(n) = f^n K(0)$.

$$K(0) \xrightarrow{f} K(1) \xrightarrow{f} K(2) \xrightarrow{f} \dots \xrightarrow{f} K(p-1) \xrightarrow{f} K(0).$$

The renormalization is called

- **primitive** if K(i)'s are pairwise disjoint,
- satellite if K(i) intersects K(0) for some $i \neq 0$.

Baby Mandelbrot sets

Theorem (Douady-Hubbard '84)

If f_{c_*} is renormalizable with period p, then there is a subset $M \subset \mathbb{M}$ containing c_* such that

- for all $c \in M$, f_c is renormalizable with period p,
- ullet the straightening map is a homeomorphism onto \mathbb{M} :

$$S_M: M \to \mathbb{M}, \quad c \mapsto S(f_c^p).$$

Baby Mandelbrot sets

Theorem (Douady-Hubbard '84)

If f_{c_*} is renormalizable with period p, then there is a subset $M \subset \mathbb{M}$ containing c_* such that

- for all $c \in M$, f_c is renormalizable with period p,
- ullet the straightening map is a homeomorphism onto \mathbb{M} :

$$S_M: M \to \mathbb{M}, \quad c \mapsto S(f_c^p).$$

Primitive copy vs Satellite copy

MLC becomes a renormalization problem

 $c \in \mathbb{M}$ is **infinitely renormalizable** if it's contained in an infinite nest of baby Mandelbrot copies

$$c \in \ldots \subsetneq M_3 \subsetneq M_2 \subsetneq M_1 \subsetneq \mathbb{M}.$$

MLC becomes a renormalization problem

 $c \in \mathbb{M}$ is **infinitely renormalizable** if it's contained in an infinite nest of baby Mandelbrot copies

$$c \in \ldots \subsetneq M_3 \subsetneq M_2 \subsetneq M_1 \subsetneq \mathbb{M}.$$

Theorem (Yoccoz '90s)

If c is not infinitely renormalizable, then $\mathbb M$ is locally connected at c.

MLC becomes a renormalization problem

 $c \in \mathbb{M}$ is **infinitely renormalizable** if it's contained in an infinite nest of baby Mandelbrot copies

$$c \in \ldots \subsetneq M_3 \subsetneq M_2 \subsetneq M_1 \subsetneq \mathbb{M}$$
.

Theorem (Yoccoz '90s)

If c is not infinitely renormalizable, then $\mathbb M$ is locally connected at c.

MLC is equivalent to Combinatorial Rigidity:

"Every infinite nest of baby Mandelbrot copies shrinks to a point."

A priori bounds

Suppose f_c is ∞ renormalizable with periods $p_1 < p_2 < p_3 < \dots$

We say f_c has a **priori bounds** if for all $n \ge 1$, there exists an n^{th} renormalization $f_c^{p_n}: U_n \to V_n$ such that

$$\sup_{n\geq 1}W(V_n\backslash U_n)<\infty.$$

This means that up to affine rescaling, $\left\{f_c^{p_n}:U_n\to V_n\right\}_n$ is pre-compact.

Main Theorem

Theorem

If $f_c \in \mathbb{M}$ is ∞ renormalizable with bdd combinatorics $\left(\sup_n \frac{p_{n+1}}{p_n} < \infty\right)$, then (1) f_c has a priori bounds,

(2) \mathbb{M} is locally connected at c.

Main Theorem

Theorem

If $f_c \in \mathbb{M}$ is ∞ renormalizable with bdd combinatorics $\left(\sup_n \frac{p_{n+1}}{p_n} < \infty\right)$, then (1) f_c has a priori bounds,

(2) \mathbb{M} is locally connected at c.

[Kahn '06] proved (1) assuming every renormalization is primitive. [Dudko-Lyubich '23] proved the satellite and the general mixed case of (1). Both were proven in the near-degenerate regime.

[Lyubich '97] proved $(1) \rightarrow (2)$ for c satisfying the SL condition.

Main Theorem

Theorem

If $f_c \in \mathbb{M}$ is ∞ renormalizable with bdd combinatorics $\left(\sup_n \frac{p_{n+1}}{p_n} < \infty\right)$, then (1) f_c has a priori bounds,

(2) \mathbb{M} is locally connected at c.

[Kahn '06] proved (1) assuming every renormalization is primitive. [Dudko-Lyubich '23] proved the satellite and the general mixed case of (1). Both were proven in the near-degenerate regime.

[Lyubich '97] proved $(1) \rightarrow (2)$ for c satisfying the SL condition.

I will explain new alternative proofs of (1) using "totally degenerate regime" and (2) using Teichmüller's theorem. This is all joint work with Jeremy Kahn.

Example: stationary airplane combinatorics

Fix M = maximal baby Mandelbrot copy containing -1.755.

Example: stationary airplane combinatorics

Fix M = maximal baby Mandelbrot copy containing -1.755. Suppose our infinitely renormalizable parameter c lies in

$$\bigcap_{n\geq 1}(S_M)^{-n}(\mathbb{M}).$$

 1^{st} renormalization, $p_1 = 3$

2^{nd} renormalization, $p_2 = 3^2$

3^{rd} renormalization, $p_3 = 3^3$

Hyperbolic geodesics

Denote:

$$\mathcal{K}_n := igcup_{i=0}^{3^n-1} \mathcal{K}_n(i)$$
 $\gamma_n(i) := ext{hyp geodesic of } \mathbb{C} ackslash \mathcal{K}_n ext{ going around } \mathcal{K}_n(i)$ $\lambda_n := \pi \cdot ext{length}_{ ext{hyp}} \gamma_n(0).$

Hyperbolic geodesics

$$\mathcal{K}_n := \bigcup_{i=0}^{3^n-1} K_n(i)$$

 $\gamma_n(i) := \text{ hyp geodesic of } \mathbb{C} \setminus \mathcal{K}_n \text{ going around } \mathcal{K}_n(i)$

$$\lambda_n := \pi \cdot \operatorname{length}_{\mathsf{hyp}} \gamma_n(0).$$

Hyperbolic geodesics

Denote:

$$\mathcal{K}_n := \bigcup_{i=0}^{3^n-1} \mathcal{K}_n(i)$$
 $\gamma_n(i) := \text{ hyp geodesic of } \mathbb{C} \backslash \mathcal{K}_n \text{ going around } \mathcal{K}_n(i)$
 $\lambda_n := \pi \cdot \text{length}_{\mathsf{hyp}} \gamma_n(0).$

Properties:

• comparability: for all i,

$$\frac{\lambda_n}{2} \leq \pi \cdot \text{length}_{\text{hyp}} \gamma_n(i) \leq \lambda_n.$$

• exp growth: $\exists C > 1$ such that for all n,

$$\lambda_{n+1} \leq C\lambda_n$$
.

Degeneration

A priori bounds = the surfaces $\mathbb{C}\backslash\mathcal{K}_n$ have uniformly bdd geometry

Assume the contrary. There exist infinitely many record highs

$$n_1 < n_2 < n_3 < n_4 < \dots$$

where

$$\lambda_{n_k} = \max_{m \leq n_k} \lambda_m \quad \text{ and } \quad \lim_{k \to \infty} \lambda_{n_k} = \infty.$$

Strategy: Study the limit of $\mathbb{C}\backslash\mathcal{K}_{n_k}$ as $k\to\infty$.

Control of far-reaching curves

 $V_n^s = \text{disk bdd by } \gamma_{n-s}(0).$

Lemma 1: For any $s \ge 1$, any suff. high $k \ge 1$, and any $K_{n_k}(i)$ within $V_{n_k}^s$, $W\left(V_{n_k}^s \backslash K_{n_k}(i)\right) \le 24 \cdot 3^{-s/4} \lambda_{n_k}$.

Control of far-reaching curves

 $V_n^s = \text{disk bdd by } \gamma_{n-s}(0).$

<u>Lemma 1:</u> For any $s \ge 1$, any suff. high $k \ge 1$, and any $K_{n_k}(i)$ within $V_{n_k}^s$, $W\Big(V_{n_k}^s \backslash K_{n_k}(i)\Big) \le 24 \cdot 3^{-s/4} \lambda_{n_k}.$

The proof is an application of Quasi-Additivity Law + Covering Lemma.

Control of waves

 $\mathcal{H}_n = \text{level } n \text{ Hubbard continuum}$ (smallest compact connected forward invariant set containing \mathcal{K}_n)

<u>Lemma 2:</u> Let \mathcal{F} be any proper lamination in $V_{n_k}^s \setminus \mathcal{K}_{n_k}$ such that the intersection number between any leaf and \mathcal{H}_{n_k} is at least $m \geq 1$. Then,

$$W(\mathcal{F}) \leq Cm^{-2}3^s\lambda_{n_k}$$
.

Control of waves

 $\mathcal{H}_n = \text{level } n \text{ Hubbard continuum}$ (smallest compact connected forward invariant set containing \mathcal{K}_n)

<u>Lemma 2:</u> Let \mathcal{F} be any proper lamination in $V_{n_k}^s \setminus \mathcal{K}_{n_k}$ such that the intersection number between any leaf and \mathcal{H}_{n_k} is at least $m \geq 1$. Then,

$$W(\mathcal{F}) \leq Cm^{-2}3^s\lambda_{n_k}$$
.

Presumed geometric limit

We can construct

- $\Delta :=$ countable discrete disjoint union of disks,
- $\Delta^k = \text{disks in } \Delta \text{ contained in } \mathbb{D}_k$,
- $F: \mathbb{C} \to \mathbb{C}$, a topological σ -proper map fixing every comp. of Δ ,
- $\psi_k: V_{n_k}^k \backslash \mathcal{K}_{n_k} \to \mathbb{D}_k \backslash \Delta^k$, "Thurston equivalence" between the degree 2^{3^k} QL map $f^{p_{n_k}}: U_{n_k}^k \to V_{n_k}^k$ and the map $F: \mathbb{D}_{k-0.1} \to \mathbb{D}_k$.

Presumed geometric limit

We can construct

- $\Delta :=$ countable discrete disjoint union of disks,
- $\Delta^k = \text{disks in } \Delta \text{ contained in } \mathbb{D}_k$,
- $F: \mathbb{C} \to \mathbb{C}$, a topological σ -proper map fixing every comp. of Δ ,
- $\psi_k: V_{n_k}^k \backslash \mathcal{K}_{n_k} \to \mathbb{D}_k \backslash \Delta^k$, "Thurston equivalence" between the degree 2^{3^k} QL map $f^{p_{n_k}}: U_{n_k}^k \to V_{n_k}^k$ and the map $F: \mathbb{D}_{k-0.1} \to \mathbb{D}_k$.

Limiting measured lamination

The surface $V_{n_k}^k \backslash \mathcal{K}_{n_k}$ induces a complex structure ρ_k on $\mathbb{D}_k \backslash \Delta^k$.

Up to rescaling by λ_{n_k} ,

$$\rho_k \xrightarrow[k \to \infty]{} \text{proper measured lamination} \\ (\Xi, \mu) \text{ on } \mathbb{C} \backslash \Delta.$$

Limiting measured lamination

The surface $V_{n_k}^k \setminus \mathcal{K}_{n_k}$ induces a complex structure ρ_k on $\mathbb{D}_k \setminus \Delta^k$.

Up to rescaling by λ_{n_k} ,

$$\rho_k \xrightarrow[k \to \infty]{} \text{proper measured lamination} \\ (\Xi, \mu) \text{ on } \mathbb{C} \backslash \Delta.$$

Limiting measured lamination

The surface $V_{n_k}^k \setminus \mathcal{K}_{n_k}$ induces a complex structure ρ_k on $\mathbb{D}_k \setminus \Delta^k$.

Up to rescaling by λ_{n_k} ,

$$\rho_k \xrightarrow[k \to \infty]{} \text{proper measured lamination} \\ (\Xi, \mu) \text{ on } \mathbb{C} \backslash \Delta.$$

For any proper arc α ,

$$\mu(\Xi \text{ along } \alpha) = \lim_{k \to \infty} \frac{W(\text{curves in } (\mathbb{D}_k \backslash \Delta^k, \rho_k) \text{ homotopic to } \alpha)}{\lambda_{n_k}}$$

A compound lamination

Inside of Δ , we can fill in disk laminations Λ associated to $K_{n_k}(i)$'s. This gives us a compound lamination

$$\mathbf{X} = (\Xi, \mu, \Lambda).$$

A compound lamination

Inside of Δ , we can fill in disk laminations Λ associated to $K_{n_k}(i)$'s. This gives us a compound lamination

$$\mathbf{X} = (\Xi, \mu, \Lambda).$$

How to define modulus

A natural path γ along ${\bf X}$ is a concatenation

$$\xi_1 \# \delta_2 \# \xi_2 \# \delta_3 \# \xi_3 \dots \# \delta_m \# \xi_m$$

of external segments $\xi_i \in \Xi$ and internal segments $\delta_i \in \Lambda$.

How to define modulus

A natural path γ along ${\bf X}$ is a concatenation

$$\xi_1 \# \delta_2 \# \xi_2 \# \delta_3 \# \xi_3 \dots \# \delta_m \# \xi_m$$

of external segments $\xi_i \in \Xi$ and internal segments $\delta_i \in \Lambda$.

For a function $\rho:\Xi\to [0,\infty)$, define

$$L_{\rho}(\gamma) = \sum_{i=1}^{m} \rho(\xi_i).$$

For any natural path family Γ along X,

$$\mathsf{mod}_{\mathbf{X}}(\mathsf{\Gamma}) := \mathsf{inf} \left\{ \int_{\mathsf{\Xi}} \rho^2 d\mu \ : \ \mathsf{L}_{\rho}(\gamma) \geq 1 \ \mathsf{for \ all} \ \gamma \in \mathsf{\Gamma} \right\}.$$

Domination Property

For any natural path family Γ along X,

$$\mathsf{mod}_{\mathbf{X}}(\Gamma) \leq \mathsf{mod}_{F^*\mathbf{X}}(\tilde{\Gamma}),$$

where $\tilde{\Gamma}$ is a natural path family along F^*X "homotopic to Γ rel Δ ".

Returning family

Disks in Δ^s are connected by a (homotopy) Hubbard tree \mathcal{H}^s .

- ullet ${f X}^s=$ all natural paths along ${f X}$ from Δ^s to Δ^s
- ullet $\mathcal{H}^{s,\perp}=$ system of infinite curves dual to \mathcal{H}^k
- ullet $\left\langle \mathbf{X}^{s},\mathcal{H}^{s,\perp}
 ight
 angle =$ weighted intersection number

Returning family

Disks in Δ^s are connected by a (homotopy) Hubbard tree \mathcal{H}^s .

- ullet ${f X}^s=$ all natural paths along ${f X}$ from Δ^s to Δ^s
- $m{\cdot}$ $\mathcal{H}^{s,\perp}=$ system of infinite curves dual to \mathcal{H}^k
- ullet $\left\langle \mathbf{X}^{s},\mathcal{H}^{s,\perp}
 ight
 angle =$ weighted intersection number

Three observations:

- For $s \ge 12$, $0 < \left\langle \mathbf{X}^s, \mathcal{H}^{s,\perp} \right\rangle < \infty$
- By the Domination Property, $\left\langle \mathbf{X}^{s},\mathcal{H}^{s,\perp}\right\rangle \leq \left\langle (F^{*}\mathbf{X})^{s},\mathcal{H}^{s,\perp}\right\rangle$
- By forward invariance of \mathcal{H}^s , $\left\langle \mathbf{X}^s, \mathcal{H}^{s,\perp} \right\rangle > \left\langle (F^*\mathbf{X})^s, \mathcal{H}^{s,\perp} \right\rangle$

Satellite case

We can perform similar analysis for bouquets of little Julia sets.

A priori bounds imply MLC?

Let f_c and $f_{\tilde{c}}$ be two combinatorially equivalent ∞ renormalizable maps. The goal is to show that $c=\tilde{c}$. The major step is to prove:

<u>Goal:</u> There exists a sequence of uniformly qc maps $\phi_n : \mathbb{C} \to \mathbb{C}$ that

- sends $f_c^j(0)$ to $f_{\tilde{c}}^j(0)$ for $1 \leq j \leq p_n$,
- lifts to a qc map ψ_n homotopic to ϕ_n rel $\{f_c^i(0)\}_{1 \leq i \leq p_n-1}$.

A priori bounds imply MLC?

Let f_c and $f_{\tilde{c}}$ be two combinatorially equivalent ∞ renormalizable maps. The goal is to show that $c=\tilde{c}$. The major step is to prove:

<u>Goal:</u> There exists a sequence of uniformly qc maps $\phi_n : \mathbb{C} \to \mathbb{C}$ that

- sends $f_c^j(0)$ to $f_{\tilde{c}}^j(0)$ for $1 \leq j \leq p_n$,
- lifts to a qc map ψ_n homotopic to ϕ_n rel $\{f_c^i(0)\}_{1 \leq i \leq p_n-1}$.

Consider the Teichmüller extremal map h_n satisfying the above. We want:

$$\sup_n \mathsf{Dil}(h_n) < \infty.$$

Via measured foliations

Fix n. Then $h=h_n$ sends a unit area quad. diff. Q to a quad. diff. \tilde{Q} .

Consider measured foliations $\mathcal{F}=\mathit{Hor}(\mathit{Q})$ and $\mathcal{G}=\mathit{Ver}(\tilde{\mathit{Q}}).$ Then,

$$\mathsf{Dil}(h) = \langle h_* \mathcal{F}, \mathcal{G} \rangle.$$

Splitting into blocks

On the dyn. plane of f_c , split the punctured plane into blocks by cutting along the level n geodesic multicurve collars and Hubbard continuum.

Splitting into blocks

On the dyn. plane of f_c , split the punctured plane into blocks by cutting along the level n geodesic multicurve collars and Hubbard continuum.

This induces proper laminations $\mathcal{F}|_b$ i.e. restrictions of \mathcal{F} onto each block.

$$\langle h_* \mathcal{F}, \mathcal{G} \rangle^2 \leq \max_{\mathsf{block}\ b} W(\mathcal{F}|_b) \cdot \max_{\mathsf{block}\ \tilde{b}} W(\mathcal{G}|_{\tilde{b}}).$$

The final upper bound follows from a priori bounds.

Thank you!