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Quadratic polynomials

Every quadratic polynomial over C is affinely conjugate to a unique map of
the form

fc(z) = z2 + c .

Filled Julia (FJ) set of fc :

K (fc) = {z ∈ C : f nc (z) ̸→ ∞ as n → ∞}

Mandelbrot set:

M = {c ∈ C : 0 ∈ K (fc)}
= {c ∈ C : K (fc) is connected}
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The Mandelbrot set
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MLC

MLC Conjecture: M is locally connected.
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QL maps

A quadratic-like (QL) map is a holomorphic double branched covering
map

f : U → V

between nested disks U ⋐ V such that its FJ set

K (f ) := {z : f n(z) ∈ U for all n ≥ 1},
is connected.

K (f )

U

V
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Straightening

Theorem (Douady-Hubbard ’84)

For every QL map f : U → V , there exists

a unique c = c(f ) in M and

a quasiconformal map ϕ : U → C with ∂̄ϕ = 0 on K (f )

such that
ϕ ◦ f = fc ◦ ϕ.

This theorem defines the straightening map

S : {QL maps} → M, f 7→ c(f ).
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Renormalization

A quadratic(-like) map f is called renormalizable with period p ≥ 2
if there exist disks A ⋐ B containing the critical point of f such that

f p : A → B

is a QL map called a (pre)-renormalization of f .

.Denote:

.
K (0) = FJ set of f p : A → B,

K (n) = f nK (0).

K (0) −→
f

K (1) −→
f

K (2) −→
f
. . . −→

f
K (p − 1) −→

f
K (0).

The renormalization is called

primitive if K (i)’s are pairwise disjoint,

satellite if K (i) intersects K (0) for some i ̸= 0.
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Baby Mandelbrot sets

Theorem (Douady-Hubbard ’84)

If fc∗ is renormalizable with period p, then there is a subset M ⊂ M
containing c∗ such that

for all c ∈ M, fc is renormalizable with period p,

the straightening map is a homeomorphism onto M:

SM : M → M, c 7→ S(f pc ).

primitive copy satellite copy
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Primitive copy vs Satellite copy

a b

K (fa) K (fb)
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MLC becomes a renormalization problem

c ∈ M is infinitely renormalizable if it’s contained in an infinite nest of
baby Mandelbrot copies

c ∈ . . . ⊊ M3 ⊊ M2 ⊊ M1 ⊊ M.

Theorem (Yoccoz ’90s)

If c is not infinitely renormalizable, then M is locally connected at c.

MLC is equivalent to Combinatorial Rigidity:

“Every infinite nest of baby Mandelbrot copies shrinks to a point.“
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A priori bounds

Suppose fc is ∞ renormalizable with periods p1 < p2 < p3 < . . ..

We say fc has a priori bounds if for all n ≥ 1, there exists an nth

renormalization f pnc : Un → Vn such that

sup
n≥1

W (Vn\Un) <∞.

This means that up to affine rescaling,
{
f pnc : Un → Vn

}
n
is pre-compact.
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Main Theorem

Theorem

If fc ∈ M is ∞ renormalizable with bdd combinatorics
(
sup
n

pn+1

pn
<∞

)
,

then (1) fc has a priori bounds,
(2) M is locally connected at c.

[Kahn ’06] proved (1) assuming every renormalization is primitive.
[Dudko-Lyubich ’23] proved the satellite and the general mixed case of (1).
Both were proven in the near-degenerate regime.

[Lyubich ’97] proved (1) → (2) for c satisfying the SL condition.

I will explain new alternative proofs of (1) using “totally degenerate
regime“ and (2) using Teichmüller’s theorem. This is all joint work with
Jeremy Kahn.
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Example: stationary airplane combinatorics

Fix M = maximal baby Mandelbrot copy containing −1.755.
Suppose our infinitely renormalizable parameter c lies in⋂

n≥1

(SM)−n(M).

SM
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1st renormalization, p1 = 3

K1(0)K1(1) K1(2)

fc fc

fc
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2nd renormalization, p2 = 32

K2(1) K2(0)K2(6) K2(3)

f 3c

f 3cf 3c
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3rd renormalization, p3 = 33

f 9c f 9c

f 9c
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Hyperbolic geodesics

Denote:
Kn :=

3n−1⋃
i=0

Kn(i)

γn(i) := hyp geodesic of C\Kn going around Kn(i)

λn := π · lengthhypγn(0).

γ2(0)

γ3(0)
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Hyperbolic geodesics

Denote:
Kn :=

3n−1⋃
i=0

Kn(i)

γn(i) := hyp geodesic of C\Kn going around Kn(i)

λn := π · lengthhypγn(0).

Properties:

comparability: for all i ,

λn
2

≤ π · lengthhypγn(i) ≤ λn.

exp growth: ∃ C > 1 such that for all n,

λn+1 ≤ Cλn.
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Degeneration

A priori bounds = the surfaces C\Kn have uniformly bdd geometry

Assume the contrary. There exist infinitely many record highs

n1 < n2 < n3 < n4 < . . .

where
λnk = max

m≤nk
λm and lim

k→∞
λnk = ∞.

Strategy: Study the limit of C\Knk as k → ∞.
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Control of far-reaching curves

V s
n = disk bdd by γn−s(0).

Lemma 1: For any s ≥ 1, any suff. high k ≥ 1, and any Knk (i) within V s
nk
,

W
(
V s
nk
\Knk (i)

)
≤ 24 · 3−s/4λnk .

V 2
nk

Knk
(i)

The proof is an application of Quasi-Additivity Law + Covering Lemma.
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Control of waves

Hn = level n Hubbard continuum
Hn = (smallest compact connected forward invariant set containing Kn)

Lemma 2: Let F be any proper lamination in V s
nk
\Knk such that the

intersection number between any leaf and Hnk is at least m ≥ 1. Then,

W (F) ≤ Cm−23sλnk .

V 2
nk

F
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Presumed geometric limit

We can construct

∆ := countable discrete disjoint union of disks,

∆k = disks in ∆ contained in Dk ,

F : C → C, a topological σ-proper map fixing every comp. of ∆,

ψk : V k
nk
\Knk → Dk\∆k , “Thurston equivalence“ between the degree

23
k
QL map f pnk : Uk

nk
→ V k

nk
and the map F : Dk−0.1 → Dk .

U2
nk

D1.9

V 2
nk D2

ψ̃2

ψ2
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Limiting measured lamination

The surface V k
nk
\Knk induces a complex structure ρk on Dk\∆k .

Up to rescaling by λnk ,

ρk −−−−−−−→
k→∞

proper measured lamination
(Ξ, µ) on C\∆.
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Limiting measured lamination

The surface V k
nk
\Knk induces a complex structure ρk on Dk\∆k .

Up to rescaling by λnk ,

ρk −−−−−−−→
k→∞

proper measured lamination
(Ξ, µ) on C\∆.

For any proper arc α,

µ(Ξ along α) = lim
k→∞

W (curves in (Dk\∆k , ρk) homotopic to α)

λnk
.

V 2
nk D2
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A compound lamination

Inside of ∆, we can fill in disk laminations Λ associated to Knk (i)’s.
This gives us a compound lamination

X = (Ξ, µ,Λ).
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How to define modulus

A natural path γ along X is a concatenation

ξ1 # δ2 # ξ2 # δ3 # ξ3 . . . # δm # ξm

of external segments ξi ∈ Ξ and internal segments δi ∈ Λ.
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How to define modulus

A natural path γ along X is a concatenation

ξ1 # δ2 # ξ2 # δ3 # ξ3 . . . # δm # ξm

of external segments ξi ∈ Ξ and internal segments δi ∈ Λ.

For a function ρ : Ξ → [0,∞), define

Lρ(γ) =
m∑
i=1

ρ(ξi ).

For any natural path family Γ along X,

modX(Γ) := inf

{∫
Ξ
ρ2dµ : Lρ(γ) ≥ 1 for all γ ∈ Γ

}
.
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Domination Property

For any natural path family Γ along X,

modX(Γ) ≤ modF∗X(Γ̃),

where Γ̃ is a natural path family along F ∗X “homotopic to Γ rel ∆“.

Γ

Γ̃
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Returning family

Disks in ∆s are connected by a (homotopy) Hubbard tree Hs .

Xs = all natural paths along X from ∆s to ∆s

Hs,⊥ = system of infinite curves dual to Hk〈
Xs ,Hs,⊥

〉
= weighted intersection number

H1,⊥
X1
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Returning family

Disks in ∆s are connected by a (homotopy) Hubbard tree Hs .

Xs = all natural paths along X from ∆s to ∆s

Hs,⊥ = system of infinite curves dual to Hk〈
Xs ,Hs,⊥

〉
= weighted intersection number

Three observations:

For s ≥ 12, 0 <
〈
Xs ,Hs,⊥

〉
<∞

By the Domination Property,
〈
Xs ,Hs,⊥

〉
≤

〈
(F ∗X)s ,Hs,⊥

〉
By forward invariance of Hs ,

〈
Xs ,Hs,⊥

〉
>

〈
(F ∗X)s ,Hs,⊥

〉
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Satellite case

We can perform similar analysis for bouquets of little Julia sets.

Kn(0)

Kn(i)

Kn(2i)
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A priori bounds imply MLC?

Let fc and fc̃ be two combinatorially equivalent ∞ renormalizable maps.
The goal is to show that c = c̃ . The major step is to prove:

Goal: There exists a sequence of uniformly qc maps ϕn : C → C that

sends f jc (0) to f jc̃ (0) for 1 ≤ j ≤ pn,

lifts to a qc map ψn homotopic to ϕn rel {f ic (0)}1≤i≤pn−1.

Consider the Teichmüller extremal map hn satisfying the above. We want:

sup
n

Dil(hn) <∞.
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Via measured foliations

Fix n. Then h = hn sends a unit area quad. diff. Q to a quad. diff. Q̃.

Consider measured foliations F = Hor(Q) and G = Ver(Q̃). Then,

Dil(h) = ⟨h∗F ,G⟩.

h

F h∗F

G
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Splitting into blocks

On the dyn. plane of fc , split the punctured plane into blocks by cutting
along the level n geodesic multicurve collars and Hubbard continuum.

This induces proper laminations F|b i.e. restrictions of F onto each block.

⟨h∗F ,G⟩2 ≤ max
block b

W (F|b) · max
block b̃

W (G|b̃).

The final upper bound follows from a priori bounds.
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Thank you!
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