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Quadratic polynomials

Every quadratic polynomial over C is affinely conjugate to a unique map of
the form
f(z) =2z*+c.

o Filled Julia (FJ) set of f.:
K(f.)={ze€C : f(z) / 0o as n — oo}
@ Mandelbrot set:

={c e C : K(f.) is connected}
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The Mandelbrot set
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MLC

MLC Conjecture: M is locally connected.
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QL maps

A quadratic-like (QL) map is a holomorphic double branched covering
map

f:U—=V
between nested disks U € V such that its FJ set

K(f):={z : f"(z) € U forall n> 1},
is connected.

<
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Straightening

Theorem (Douady-Hubbard '84)
For every QL map f : U — V, there exists
@ a unique ¢ = c(f) in M and

e a quasiconformal map ¢ : U — C with 0¢ = 0 on K(f)
such that

pof ="fo0¢.

This theorem defines the straightening map

S:{QL maps} = M, £~ c(f).
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Renormalization

A quadratic(-like) map f is called renormalizable with period p > 2
if there exist disks A € B containing the critical point of f such that

fP:A— B

is a QL map called a (pre)-renormalization of f.

7/50



Renormalization

A quadratic(-like) map f is called renormalizable with period p > 2
if there exist disks A € B containing the critical point of f such that
fP:A— B

is a QL map called a (pre)-renormalization of f.
Denote: e K(0)=FJsetof fP: A— B,
e K(n) = f"K(0).
K(0) - K(1) - K(2) PR K(p—1) - K(0).
The renormalization is called

e primitive if K(/)'s are pairwise disjoint,

e satellite if K(/) intersects K(0) for some i # 0.
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Baby Mandelbrot sets

Theorem (Douady-Hubbard '84)

If f., is renormalizable with period p, then there is a subset M C M
containing c, such that

e for all c € M, f. is renormalizable with period p,
@ the straightening map is a homeomorphism onto M:

Sw:M =M, cr S(fP).
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Baby Mandelbrot sets

Theorem (Douady-Hubbard '84)

If f., is renormalizable with period p, then there is a subset M C M
containing c, such that

e for all c € M, f. is renormalizable with period p,
@ the straightening map is a homeomorphism onto M:

Sm:M—=M, cw— S(fP).

primitive copy

satellite copy
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Primitive copy vs Satellite copy
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MLC becomes a renormalization problem

c € M is infinitely renormalizable if it's contained in an infinite nest of
baby Mandelbrot copies

CE...QM3§M2§_M1§_M.
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MLC becomes a renormalization problem

c € M is infinitely renormalizable if it's contained in an infinite nest of
baby Mandelbrot copies

CE...QM3§M2§_M1§_M.

Theorem (Yoccoz '90s)

If ¢ is not infinitely renormalizable, then M is locally connected at c. J
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MLC becomes a renormalization problem

c € M is infinitely renormalizable if it's contained in an infinite nest of
baby Mandelbrot copies

CE...QM3§M2§_M1§_M.

Theorem (Yoccoz '90s)

If ¢ is not infinitely renormalizable, then M is locally connected at c. J

MLC is equivalent to Combinatorial Rigidity:

“Every infinite nest of baby Mandelbrot copies shrinks to a point. "
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A priori bounds

Suppose f. is 0o renormalizable with periods p1 < po < p3 < .. ..

We say f. has a priori bounds if for all n > 1, there exists an nth
renormalization " : U, — V,, such that

sup W(V,\U,) < 0.

n>1

This means that up to affine rescaling, {fcp” U, — V,,}n is pre-compact.
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Main Theorem

Theorem

If fo € Ml is 0o renormalizable with bdd combinatorics (sup o < oo),
n Pn

then (1) f. has a priori bounds,

(2) M is locally connected at c.
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Main Theorem

Theorem

If f- € M is oo renormalizable with bdd combinatorics (sup (Pleni] < oo),

n Pn
then (1) f. has a priori bounds,

(2) M is locally connected at c.

[Kahn '06] proved (1) assuming every renormalization is primitive.
[Dudko-Lyubich '23] proved the satellite and the general mixed case of (1).
Both were proven in the near-degenerate regime.

[Lyubich '97] proved (1) — (2) for c satisfying the SL condition.
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Main Theorem

Theorem

If f- € M is oo renormalizable with bdd combinatorics (sup (Pleni] < oo),
n pn
then (1) f. has a priori bounds,

(2) M is locally connected at c.

[Kahn '06] proved (1) assuming every renormalization is primitive.
[Dudko-Lyubich '23] proved the satellite and the general mixed case of (1).
Both were proven in the near-degenerate regime.

[Lyubich '97] proved (1) — (2) for c satisfying the SL condition.

| will explain new alternative proofs of (1) using “totally degenerate
regime" and (2) using Teichmiiller's theorem. This is all joint work with
Jeremy Kahn.
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Example: stationary airplane combinatorics

Fix M = maximal baby Mandelbrot copy containing —1.755.
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Example: stationary airplane combinatorics

Fix M = maximal baby Mandelbrot copy containing —1.755.
Suppose our infinitely renormalizable parameter c lies in
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1% renormalization, p; = 3

fe fe
' ' L
1 I | | I | | I |
Kl(l)\:i/mm
fe
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2" renormalization, p, = 32

3
PR
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£3 £3
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3

3" renormalization, p3 =3
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Hyperbolic geodesics

Denote: 3n-1

Kn:= {J Kali)
i=0

vn(i) := hyp geodesic of C\K, going around K ()
Ap = 7 - lengthy, ;7n(0).
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Hyperbolic geodesics

Denote:
K,:=
Wn(i) =
Ap =
] L |
| | |
+++ —+4++ +++

37—1

U Kali)

i=0

hyp geodesic of C\K,, going around K (i)
7 - lengthy,, ;74 (0).

+HE e+ A

73(0)
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Hyperbolic geodesics

Denote: 3"-1
Kni= U Kn(i)
i=0
vn(7) := hyp geodesic of C\C,, going around K,(i)
Ap i= 7 - lengthy, ;74 (0).
Properties:

@ comparability: for all i,

An

> <m- Iengthhypfy,,(i) < \,.

@ exp growth: 3 C > 1 such that for all n,

)\n+1 < CAn
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Degeneration

A priori bounds = the surfaces C\K,, have uniformly bdd geometry

Assume the contrary. There exist infinitely many record highs
n<n<n<n<...
where

An, = mMax A\, and lim A, = oo.
m<ny k—o0

Strategy: Study the limit of C\KC,, as k — oo.
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Control of far-reaching curves
Vs = disk bdd by v,_s(0).

Lemma 1: For any s > 1, any suff. high kK > 1, and any K, (i) within Ve
W(V,fk\Knk(i)) <24.375/4), |
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Control of far-reaching curves
Vs = disk bdd by v,_s(0).

Lemma 1: For any s > 1, any suff. high kK > 1, and any K, (i) within Ve
W(V,fk\Knk(i)) <24.375/4), |

2
Vn;\,

+++ + 4+ 4+ +++ +++ H+ 4 +++ + 4+

Knk ()

The proof is an application of Quasi-Additivity Law + Covering Lemma.
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Control of waves

H,, = level n Hubbard continuum

(smallest compact connected forward invariant set containing C,,)

Lemma 2: Let F be any proper lamination in V; \KC;, such that the
intersection number between any leaf and H,, is at least m > 1. Then,

W(F) < Cm™23°)\,,.
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Control of waves

H,, = level n Hubbard continuum

(smallest compact connected forward invariant set containing C,,)

Lemma 2: Let F be any proper lamination in V; \KC;, such that the
intersection number between any leaf and H,, is at least m > 1. Then,

W(F) < Cm™23°)\,,.

\/2

ny

]:
+++ +++ A Y +++ +++
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Presumed geometric limit

We can construct
@ A := countable discrete disjoint union of disks,
Ak = disks in A contained in Dy,
F : C — C, a topological o-proper map fixing every comp. of A,
Y V,f‘k\IC,,k — D \AK, “Thurston equivalence" between the degree
23 QL map P Uf — VX and the map F : Dx_q1 — Dy.
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Presumed geometric limit

We can construct
@ A := countable discrete disjoint union of disks,
Ak = disks in A contained in Dy,
F : C — C, a topological o-proper map fixing every comp. of A,
Y V,f‘k\IC,,k — D \AK, “Thurston equivalence" between the degree
23 QL map P Uf — VX and the map F : Dx_q1 — Dy.

Vo

+++ +4+4+ ++ ¢+ OO0 OO0 000

—_—
U? P2 Dy g
Nk

v D,

33/50



Limiting measured lamination

The surface V,ffk\lC,,k induces a complex structure p, on D\ A.

Up to rescaling by A,,,

proper measured lamination
S (=, 1) on C\A.
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Limiting measured lamination

The surface V,ffk\lC,,k induces a complex structure p, on D\ A.

Up to rescaling by A,,,
proper measured lamination
S (=, 1) on C\A.

OO0 OO0 00O
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Limiting measured lamination

The surface V,fk\lan induces a complex structure py on D\ A.
Up to rescaling by A,,,

proper measured lamination
AP (=, 1) on C\A.
For any proper arc «,

m W (curves in (Dx\AX, px) homotopic to )
|

k—o00 )\”k .

u(= along )

+++\+f\+++ 000 00L VOO

Vo, D,
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A compound lamination

Inside of A, we can fill in disk laminations A associated to Kj, (i)'s.
This gives us a compound lamination

X = (Z, 1, N).
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A compound lamination

Inside of A, we can fill in disk laminations A associated to Kj, (i)'s.
This gives us a compound lamination

X = (Z, 1, N).

OO0 000 000
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How to define modulus

A natural path v along X is a concatenation

QH#RHOLHBHEG ... #Im#Hln

of external segments &; € = and internal segments §; € A.

O O O 00O
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How to define modulus

A natural path + along X is a concatenation

G H#HOHFLHGBHE .. #HOmH#m

of external segments &; € = and internal segments §; € A.

For a function p : = — [0, 00), define
Lo(v) =Y p(&)-
i=1
For any natural path family I along X,

modx () := inf{/_p2du  Ly(y) > 1forall v € F} .

40/50



Domination Property

For any natural path family I along X,
modx () < modr«x(),

where [ is a natural path family along F*X “homotopic to I rel A",

O " OO0
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Returning family

Disks in A® are connected by a (homotopy) Hubbard tree #?°.

@ X° = all natural paths along X from A® to A®

o 151 = system of infinite curves dual to H*

° <X5,H57L> = weighted intersection number
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Returning family

Disks in A® are connected by a (homotopy) Hubbard tree H®.

@ X® = all natural paths along X from A® to A®

o HS1 = system of infinite curves dual to H*

° <X5,H5’L> = weighted intersection number

Three observations:
@ Fors>12,0< <X5,HS’L> < 00

@ By the Domination Property, <X5,HS’J‘> < <(F*X)5,7-[S’J‘>

e By forward invariance of #H°, <X$,’Hs’l> > <(F*X)S,H5’l>
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Satellite case

We can perform similar analysis for bouquets of little Julia sets.

T
ro
SN w

Kn:)jfm(zl)

v 7
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A priori bounds imply MLC?

Let 7. and fz be two combinatorially equivalent oo renormalizable maps.
The goal is to show that ¢ = ¢. The major step is to prove:

Goal: There exists a sequence of uniformly qc maps ¢, : C — C that
e sends f2(0) to ij(O) for 1 <j < pp,
o lifts to a gc map ¢, homotopic to ¢, rel {£/(0)}1<i<p,—1-
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A priori bounds imply MLC?

Let 7. and fz be two combinatorially equivalent oo renormalizable maps.
The goal is to show that ¢ = ¢. The major step is to prove:

Goal: There exists a sequence of uniformly qc maps ¢, : C — C that
e sends f2(0) to ij(O) for 1 <j < pp,
o lifts to a gc map ¢, homotopic to ¢, rel {£/(0)}1<i<p,—1-

Consider the Teichmuller extremal map h, satisfying the above. We want:

sup Dil(h,) < oo.
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Via measured foliations

Fix n. Then h = h, sends a unit area quad. diff. Q to a quad. diff. Q.

Consider measured foliations F = Hor(Q) and G = Ver(Q). Then,

Dil(h) = (h.F,G).
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Splitting into blocks

On the dyn. plane of f., split the punctured plane into blocks by cutting
along the level n geodesic multicurve collars and Hubbard continuum.
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Splitting into blocks

On the dyn. plane of f., split the punctured plane into blocks by cutting
along the level n geodesic multicurve collars and Hubbard continuum.

— T

Goo) (o) EGoe

€22 @oo)Ee:

This induces proper laminations F| i.e. restrictions of F onto each block.

(hF,G)* < max W(Flp)- max W(G|z).
block b block b

The final upper bound follows from a priori bounds.
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Thank you!
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